Advertisement

Historical Perspective of Humanoid Robot Research in Europe

  • Yannick Aoustin
  • Christine Chevallereau
  • Jean-Paul Laumond
Reference work entry

Abstract

From the very first humanoid automation designed by Leonardo da Vinci in 1495 to Pyrène – a fully force control humanoid robot – designed for research purpose in 2016, this chapter discusses the contributions of Europe in humanoid robot research and development. It is organized around the presentation of the main influential platforms, followed by thematic contributions covering collaborative robots, control, biomechanics, and neurosciences.

References

  1. 1.
    M.E. Moran, The da vinci robot. J. Endourol. 20(12), 986–990 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Doyon, L. Liaigre, Jacques Vaucanson, mécanicien de génie (PUF, Paris, 1966)Google Scholar
  3. 3.
    M. Vukobratovic, D. Juricic, Contribution to the synthesis of biped gait, in Proceedings of the IFAC Symposium on Technical and Biological Problem on Control, (USSR, Erevan), p. 1968Google Scholar
  4. 4.
    A. Takanishi, M. Ishida, Y. Yamazaki, I. Kato, The realization of dynamic walking by the biped walking robot wl−10rd. J. Robot. Soc. Jpn 3(4), 325–336 (1985)CrossRefGoogle Scholar
  5. 5.
    M. Vukobratovic, Legged Locomotion Robots and Anthropomorphic Mechanisms (in English), Research monograph, Mihailo Pupin Institue, Belgrade, 1975, also published in Japanese, Nikkan Shumum, Tokyo, 1975, in Russian “MIR”, Moscow, 1976, in Chinese, Beijing, 1983, pp. 136–195 (1975)Google Scholar
  6. 6.
    S. Lohmeier, K. Loeffler, M. Gienger, H. Ulbrich, F. Pfeiffer, Computer system and control of biped “johnnie”, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2004, pp. 4222–4227Google Scholar
  7. 7.
    S. Kajita, K. Tani, Experimental study of biped dynamic walking in the linear inverted pendulum mode, in Proceedings of the IEEE Conference on Robotics and Automation, 1995, pp. 2885–2891Google Scholar
  8. 8.
    T. Buschmann, S. Lohmeier, H. Ulbrich, Humanoid robot lola: design and walking control. J. Phys. Paris 103(3–5), 141–148 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Konyev, F. Palis, Y. Zavgorodniy, A. Melnykov, A. Rudsky, A. Telesh, U. Shmucker, Presentation of a new biped robot ROTTO, in Proceedings of the International Conference on Climbing and Walking Robots CLAWAR, (World Scientific, Istanbul, 2009), pp. 551–558Google Scholar
  10. 10.
    A. Melnykov, M. Konyev, F. Palis, U. Schmucker, Biped robot “rotto”: design, simulation, experiments, in ISR/ROBOTIK, 2010Google Scholar
  11. 11.
    C.A. Monje, S. Martinez, A. Jardon, P. Pierro, C. Balaguer, D. Muñoz, Full−size humanoid robot TEO: Design attenting mechanical robustness and energy consumption, in Proceedings of the11th IEEE/RAS International Conference on Humanoid Robots, 2011, pp. 325–330Google Scholar
  12. 12.
    F.B. Horak, J.M. Macpherson, Postural orientation and equilibrium, in Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems (Wiley-Blackwell, 2011), pp. 255–292. https://doi.org/10.1002/cphy.cp120107
  13. 13.
    S. Martinez, A. Jardon, C. Balaguer, Human-inspired anticipative postural control architecture for humanoid robots, in Proceedings of the IEEE/RAS International Conference on Systems, Man, and Cybernetics, 2013, pp. 4825–4830Google Scholar
  14. 14.
    J. Baelemans, P. van Zutven, H. Nijmeijer, New path planning algorithms for higher gait stability of a bipedal robot, in Proceedings of the IEEE Int. Symp. on Safety, Security, and Rescue Robotics, Paris, 2013, pp. 1–6Google Scholar
  15. 15.
    P.W.M. van Zutven, P. Mironchyk, C. Cilli, E. Steur, E. Ilhan, J. Caarls, R.S. Pieters, A. Filiz, P. Heijkoop, T. de Boer, A. Smorenberg, E. van Breda, G.L. Lung, F. Wilbers, C. Plooij, G. van der Hoorn, S. Kiemel, R. Carloni, S. Stramigioli, T.P.H. Warmerdan, Dutch robotics 2011 adult-size team description, in 15th Annual RoboCup International Symposium, Istanbul, 2011Google Scholar
  16. 16.
    A. Konno, R. Sellaouti, F.B. Amar, F.B. Ouezdou, Design and development of the biped prototype ROBIAN, in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, Paris, 2002, pp. 1384–1389Google Scholar
  17. 17.
    S. Alfayad, M. El Asswad, A. Abdellatif, F.B. Ouezdou, A. Blanchard, N. Beaussé, P. Gaussier, Hydroid humanoïd robot head with perception and emotion capabilities: modeling, design, and experimental results. Front. Robot. AI 3, 15 (2016) [Online]. http://journal.frontiersin.org/article/10.3389/frobt.2016.00015
  18. 18.
    V.V. Beletskii, Biped Walking [In Russian] (Nauka, Moscow, 1984)Google Scholar
  19. 19.
    A.M. Formalskii, Locomotion of Anthropomorphic Mechanisms [In Russian] (Nauka, Moscow, 1982)Google Scholar
  20. 20.
    A.M. Formalskii, Ballistic walking design via impulsive control. ASCE J. Aerosp. Eng. 23(2), 129–138 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Grishin, A. Formalskii, A. Lenskii, S. Zhitomirskii, Dynamic walking of a vehicle with two telescopic legs controlled by two drives. Int. J. Robot. Res. 13(2), 137–147 (1994)CrossRefGoogle Scholar
  22. 22.
    A. Formalskii, Ballistic locomotion of a biped. Design and control of two biped machines, in Human and Machine Locomotion, ed. by A. Morecki, K. Waldron (Springer, Wein, 1997)Google Scholar
  23. 23.
    D.M. Gorinnevskii, A.M. Formalskii, A.Y. Schneider, Force control of Robotics Systems (CRC Press, Boca Raton, 1997)Google Scholar
  24. 24.
    V.B. Larin, Control of Walking Apparatuses (Naukova dumka, Kiev, 1980)Google Scholar
  25. 25.
    C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt, C. Canuddas-de Wit, J. Grizzle, Rabbit: a testbed for advanced control theory. IEEE Control. Syst. Mag. 23(5), 57–79 (2003)CrossRefGoogle Scholar
  26. 26.
    Y. Aoustin, A. Formalskii, Control design for a biped: reference trajectory based on driven angles as functions of the undriven angle. J. Comput. Syst. Sci. Int. 42(4), 159–176 (2003)MathSciNetGoogle Scholar
  27. 27.
    B. Morris, E.R. Westervelt, C. Chevallereau, G. Buche, J.W. Grizzle, Achieving bipedal running with RABBIT: six steps toward infinity, in Lecture Notes in Control and Information Sciences, (Springer, Berlin, 2006), pp. 277–297Google Scholar
  28. 28.
    E. Schuitema, M. Wisse T. Ramakers, P. Jonker, The design of leo: 2d bipedal walking robot for online autonomous reinforcement learning, in Proceedings of the International Conference Robots and Systems (IROS), 2010 IEEE/RSJ, Taipei, 2003, pp. 3238–3243Google Scholar
  29. 29.
    M. Wisse, Essentials of dynamic walking, analysis and design of two legged robots. Ph.D. Thesis, ISBN:90-77595-82-1, 2004Google Scholar
  30. 30.
    M. Wisse, J. van Frankenhuyzen, Design and construction of Mike; a 2D autonomous biped based on passive dynamic walking, in Proceedings of the International Conference on Adaptive Motion of Animals and Machines, AMAM, Kyoto/Paris, 2003, Paper number WeP–I–1Google Scholar
  31. 31.
    M. Wisse, D.G.E. Hobbelen, A.L. Schwab, Adding the upper body to passive dynamic walking robots by means of a bisecting hip mechanism. IEEE Trans. Robot. 23(1), 112–123 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Wisse, R.Q. van Der Linde, Delft Pneumatic Bipeds (Springer, Berlin/Heidelberg, 2007)CrossRefGoogle Scholar
  33. 33.
    E. Espiau, P. Sardain, The anthropomorphic biped robot bip 2000, in Proceedings of the IEEE Conference on Robotics and Automation, 2000, pp. 3997–4003Google Scholar
  34. 34.
    D. Hobbelen, T. Boer, M. Wisse, System overview of bipedal robots Flame and TUlip: tailor-made for limit cycle, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Paris, 2008, pp. 2486–2491Google Scholar
  35. 35.
    G.A. Paratt, M.M. Williamson, Series elastic actuators, in Proceedings of the IEEE/RSJ International Conference on Intellignet Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, 1995, pp. 399–406Google Scholar
  36. 36.
    J.G.D. Karsseen, M. Wisse, Running robot Phides, in Proceedings of the Dynamic Walking, Pensacola Beach, 21–24 May 2012Google Scholar
  37. 37.
    J.G.D. Karssen, M. Haberland, M. Wisse, S. Kim, The effects of swing-leg retraction on running performance: analysis, simulation, and experiment. Robotica 33(10), 2137–2155 (2015)CrossRefGoogle Scholar
  38. 38.
    Y.M.M. Lin, H.S. Lin, P.C. Lin, SLIP-model-based dynamic gait generation in a leg-wheel transformable robot with force control. IEEE Robot. Autom. Lett. 2(2), 804–810 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Müller, R. Blickhan, Running on uneven ground: leg adjustments to altered ground level. Hum. Mov. Sci. 29(4), 578–589 (2010)CrossRefGoogle Scholar
  40. 40.
    M.A. Sharbafi, C. Rode, S. Kurowski, D. Scholz, R. Möckel, K. Radkhah, G. Zhao, A.M. Rashty, O. von Stryk, A. Seyfarth, A new biarticular actuator design facilitates control of leg function in biobiped3. Bioinspir. Biomim. 11(4), 1–14 (2016)CrossRefGoogle Scholar
  41. 41.
    A. Escande, N. Mansard, P.B. Wieber, Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)CrossRefGoogle Scholar
  42. 42.
    N.G. Tsagarakis, S. Morfey, G.M. Cerda, Z. Li, D.G. Caldwell, Compliant humanoid COMAN: optimal joint stiffness tuning for modal frequency control, in Proceedings of the of the IEEE Conference on Robotics and Automation, Karlsruhe, 2013, pp. 673–678Google Scholar
  43. 43.
    B. Vanderborght05, B. Verrelst, R.V. Ham, M.V. Damme, D. Lefeber, A pneumatic biped: experimental walking results and compliance adaption experiments, in Proceedings of the of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, 2005, pp. 44–49Google Scholar
  44. 44.
    G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori, The icub humanoid robot: an open platform for research in embodied cognition, in Proceedings of the of the 8th Workshop on Performance Metrics Intelligent Systems, Gaithersburg, 2008, pp. 50–56Google Scholar
  45. 45.
    R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing − from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010)CrossRefGoogle Scholar
  46. 46.
    A.D. Ames, First steps toward underactuated human-inspired bipedal robotic walking, in Proceedings of the of the IEEE Conference on Robotics and Automation, St Paul, 2012, pp. 1011–1017Google Scholar
  47. 47.
    J. Englsberger, A. Werner, C. Ott, B. Henze, M.A. Roa, G. Garofalo, R. Burger, A. Eiberger, K. Schmid, A. Albu-Schäffer, Overview of the torque-controlled humanoid robot toro, in Proceedings of the 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, 2014, pp. 916–923Google Scholar
  48. 48.
    J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Genova, 2006, pp. 200–207Google Scholar
  49. 49.
    N. Pateromichelakis, A. Mazel, M.A. Hache, R.G.T. Koumpogiannis, B. Maisonnier, A. Berthoz, Head-eyes system and gaze analysis of the humanoid robot romeo, in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and System, Chicago, 2014, pp. 1374–1379Google Scholar
  50. 50.
    A. Stasse, R. Ruland, F. Lamiraux, A. Kheddar, K. Yokoi, W. Prinz, Integration of humanoid robots in collaborative working environment: A case study on motion generation. Intell. Serv. Robot. 2, 153–160 (2009)CrossRefGoogle Scholar
  51. 51.
    P. Pierro, C. Monje, C. Balaguer, A new approach on human-robot collaboration with humanoid robot RH-2. Intell. Serv. Robot. 29(6), 949–957 (2009)Google Scholar
  52. 52.
    G. Claudio, F. Splinder, F. Chaumette, Vision-based manipulation with the humanoid robot Romeo, in Proceedings of the 16th International Conference on Humanoid Robots (Humanoids), Cancun, 2016, pp. 286–293Google Scholar
  53. 53.
    J. Neira, A.J. Davison, J.J. Leornard, Guest editorial special issue on visual SLAM. IEEE Trans. Robot. 24(5), 929–931 (2008)CrossRefGoogle Scholar
  54. 54.
    P.B. Wieber, Viability and predictive control for safe locomotion, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Nice, 2008, pp. 1103–1108Google Scholar
  55. 55.
    S. Mason, N. Rotella, S. Schaal, L. Righetti, Balancing and walking using full dynamics lqr control with contact constraints, in Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids), Cancun, 2008, pp. 63–69Google Scholar
  56. 56.
    L. Roussel, C.C. de Wit, A. Goswami, Generation of energy optimal complete gait cycles for biped, in Proceedings of the IEEE Conference on Robotics and Automation, 2003, pp. 2036–2042Google Scholar
  57. 57.
    G. Cabodevilla, N. Chaillet, G. Abba, Energy-minimized gait for a biped robot, in Autonome Mobile Systems, (Springer, Berlin, 1995), pp. 90–99Google Scholar
  58. 58.
    C. Chevallereau, Y. Aoustin, Optimal reference trajectories for walking and running of a biped. Robotica 19(5), 557–569 (2001)CrossRefGoogle Scholar
  59. 59.
    E. Viel, The mathematical theory of optimal processes (Wiley-Interscience, New York, 1962)Google Scholar
  60. 60.
    G. Bessonnet, S. Chessé, P. Sardain, Optimal gait synthesis of a seven-link planar biped. Int. J. Robot. Res. 23(10–11), 1059–1073 (2004)CrossRefGoogle Scholar
  61. 61.
    D. Clever, M. Harant, K.H. Kochand, K. Mombaur, D.M. Endres, A novel approach for the generation of complex humanoid walking sequences based on a combination of optimal control and learning of movement primitives. Robot. Auton. Syst. 83, 287–298 (2016)CrossRefGoogle Scholar
  62. 62.
    A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Shaal, Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)MathSciNetCrossRefGoogle Scholar
  63. 63.
    C. Mandery, O. Terlemer, N. Do, M. Vahrenkamp, T. Asfour, Unifying representations and large-scale whole-body motion databases for studying human motion. IEEE Trans. Robot. 32(4), 796–809 (2016)CrossRefGoogle Scholar
  64. 64.
    J.L. Laumond, M. Benallegue, J. Carpentier, A. Bethoz, The Yoyo-Man. Int. J. Robot. Res. 24(6) (2017)Google Scholar
  65. 65.
    A. Berthoz, The brain’s sense of movement (Harvard University Press, Cambridge, MA, 2002)Google Scholar
  66. 66.
    N.G. Tsagarakis, D.G. Caldwell, A. Bicchi, F. Negrello, M. Garabini, W. Choi, L. Baccelliere, V.G. Loc, J. Noorden, M. Catalano, M. Ferrati, L. Muratore, A. Margan, L. Natale, E. Mingo, H. Dallali, A. Settimi, A. Rocchi, V. Varricchio, L. Pallottino, C. Pavan, A. Ajoudani, J. Lee, P. Kryczka, D. Kanoulas, WALK-MAN: a high performance humanoid platform for realistic environments. J. Field Robot., 986–990 (2017), to appearGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yannick Aoustin
    • 1
  • Christine Chevallereau
    • 2
  • Jean-Paul Laumond
    • 3
  1. 1.Laboratoire Des Sciences du Numérique de Nantes, (LSN2) UMR CNRS 6004Université de Nantes UFR des Sciences et Techniques de NantesNantes Cedex 3France
  2. 2.Laboratoire des Sciences du Numérique de Nantes (LS2N), UMR CNRS 6004CNRSNantes Cedex 3France
  3. 3.LAAS-CNRSUniversity of ToulouseToulouseFrance

Personalised recommendations