Advertisement

Movement-Based Communication for Humanoid-Human Interaction

  • Giulio Sandini
  • Alessandra Sciutti
  • Francesco Rea
Reference work entry

Abstract

Humans are very good at interacting and collaborating with each other. This ability is based on mutual understanding and is supported by a continuous exchange of information mediated only in minimal part by language. The majority of messages are covertly embedded in the way the two partners move their eyes and their body. It is this silent, movement-based flow of information that enables a seamless coordination. It occurs without the two partners’ awareness and the delays in the interaction, by providing the possibility to anticipate the needs and intentions of the partner. Humanoid robot, thanks to their shape and motor structure, could greatly benefit from becoming able to send analogous cues with their behaviors, as well as from understanding similar signals covertly sent by their human partners. In this chapter we will describe the main categories of implicit signals for interaction, namely, those driven by oculomotor actions and by the movement of the body. We will first discuss the neural systems supporting the understanding of these signals in humans, and we will motivate the centrality of these mechanisms for humanoid robotics. At the end of the chapter, the reader should have a clear picture of what is an implicit signal, where in the human brain it is encoded and why a humanoid robot should be able to send and read it in its human partners.

Notes

Acknowledgments

This work was supported by the European CODEFROR project (FP7-PIRSES-2013-612555). The authors thank Oskar Palinko, Alessia Vignolo, Nicoletta Noceti, Francesca Odone, Laura Patanè, and all the other collaborators for their support.

References

  1. 1.
    B. Akgün, D. Tunaoglu, E. Sahin, Action recognition through an action generation mechanism [Online]. Inter. Conf. Epigenetic . http://kovan.ceng.metu.edu.tr/pub/pdf/akgun-epirob-2010.pdf
  2. 2.
    J. Aloimonos, I. Weiss, A. Bandyopadhyay, Active vision. Int. J. Comput. Vis. 1, 333–356 (1988)CrossRefGoogle Scholar
  3. 3.
    E. Ambrosini, G. Pezzulo, M. Costantini, The eye in hand: predicting others’ behavior by integrating multiple sources of information. J. Neurophysiol. (2015).  https://doi.org/10.1152/jn.00464.2014CrossRefGoogle Scholar
  4. 4.
    S. Andrist, B. Mutlu, A. Tapus, Look like me: matching robot personality via gaze to increase motivation. Proc. ACM. CHI’15 Conf. Hum. Factors Comput. Syst. 1, 3603–3612 (2015)Google Scholar
  5. 5.
    S. Andrist, X.Z. Tan, M. Gleicher, B. Mutlu, Conversational gaze aversion for humanlike robots. ACM/IEEE Int. Conf. Human-Robot Interact. (2014).  https://doi.org/10.1145/2559636.2559666
  6. 6.
    S.M. Anzalone, S. Boucenna, S. Ivaldi, M. Chetouani, Evaluating the engagement with social robots. Int. J. Soc. Robot. 7, 465–478 (2015)CrossRefGoogle Scholar
  7. 7.
    B.D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483 (2009)CrossRefGoogle Scholar
  8. 8.
    E.I. Barakova, T. Lourens, Expressing and interpreting emotional movements in social games with robots. Pers. Ubiquit. Comput. 14, 457–467 (2010)CrossRefGoogle Scholar
  9. 9.
    J.N. Bassili, Emotion recognition: the role of facial movement and the relative importance of upper and lower areas of the face. J. Pers. Soc. Psychol. 37, 2049–2058 (1979)CrossRefGoogle Scholar
  10. 10.
    A. Beck, L. Cañamero, A. Hiolle, L. Damiano, P. Cosi, F. Tesser, G. Sommavilla, Interpretation of emotional body language displayed by a humanoid robot: a case study with children. Int. J. Soc. Robot. 5, 325–334 (2013)CrossRefGoogle Scholar
  11. 11.
    C.C. Bennett, S. Šabanović, Deriving minimal features for human-like facial expressions in robotic faces. Int. J. Soc. Robot. 6, 367–381 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Bernhardt, P. Robinson, Detecting affect from non-stylised body motions. Affect. Comput. Intell. Interact. (2007).  https://doi.org/10.1007/978-3-540-74889-2_6
  13. 13.
    F. Berton, G. Sandini, G. Metta. Anthropomorphic visual sensors [online]. Encycl. Sensors X, 1–16 (2006). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.2885&rep=rep1&type=pdf
  14. 14.
    A.M. Bestick, S.A. Burden, G. Willits, N. Naikal, Personalized kinematics for human – robot collaborative manipulation. Proc. IEEE Conf. Intell. Robot. Syst. pp. 1037–1044Google Scholar
  15. 15.
    E. Bicho, L. Louro, W. Erlhagen, Integrating verbal and nonverbal communication in a dynamic neural field architecture for human-robot interaction. Front. Neurorobot. 4, 5 (2010)Google Scholar
  16. 16.
    A. Bisio, A. Sciutti, F. Nori, G. Metta, L. Fadiga, G. Sandini, T. Pozzo, Motor contagion during human-human and human-robot interaction. PLoS One 9, e106172 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Blake, M. Shiffrar, Perception of human motion. Annu. Rev. Psychol. 58, 47–73 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Bonini, P.F. Ferrari, L. Fogassi, Neurophysiological bases underlying the organization of intentional actions and the understanding of others’ intention. Conscious. Cogn. 22, 1095–1104 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Borji, D. Parks, L. Itti, Complementary effects of gaze direction and early saliency in guiding fixations during free viewing. J. Vis. 14, 3 (2014)CrossRefGoogle Scholar
  20. 20.
    J.-D. Boucher, U. Pattacini, A. Lelong, G. Bailly, F. Elisei, S. Fagel, P.F. Dominey, J. Ventre-Dominey, I reach faster when I see you look: gaze effects in human-human and human-robot face-to-face cooperation. Front. Neurorobot. 6, 3 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Breazeal, Toward sociable robots. Rob. Auton. Syst. 42, 167–175 (2003)zbMATHCrossRefGoogle Scholar
  22. 22.
    C. Breazeal, A. Edsinger, P. Fitzpatrick, B. Scassellati, Active vision for sociable robots. IEEE Trans. Man, Cybern. Syst. XX, 1–12 (2000)Google Scholar
  23. 23.
    C. Breazeal, C.D. Kidd, A.L. Thomaz, G. Hoffman, M. Berlin, Effects of nonverbal communication on efficiency and robustness in human-robot teamwork, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 708–713Google Scholar
  24. 24.
    C. (Ferrell) Breazeal, J. Velasquez, Toward teaching a robot “infant” using emotive communication acts, in Proceedings of the 1998 Simulated Adaptive Behavior Workshop on Socially Situated Intelligence, pp. 25–40 (1998)Google Scholar
  25. 25.
    A.G. Brooks, R.C. Arkin, Behavioral overlays for non-verbal communication expression on a humanoid robot. Auton Robots 22, 55–74 (2006)CrossRefGoogle Scholar
  26. 26.
    R. Brooks, A.N. Meltzoff, The importance of eyes: how infants interpret adult looking behavior. Dev. Psychol. 38, 958–966 (2002)CrossRefGoogle Scholar
  27. 27.
    S.J. Burton, A.A. Samadani, R. Gorbet, D. Kulić, Laban movement analysis and affective movement generation for robots and other near-living creatures, in Dance Notations and Robot Motion, ed. by J.P. Laumond, N. Abe. Springer Tracts in Advanced Robotics, vol. 111 (Springer, Cham, 2016), pp. 25–48Google Scholar
  28. 28.
    L. Camaioni, P. Perucchini, F. Bellagamba, C. Colonnesi, The role of declarative pointing in developing a theory of mind. Infancy 5, 291–308 (2004)CrossRefGoogle Scholar
  29. 29.
    F. Campanella, G. Sandini, M.C. Morrone, Visual information gleaned by observing grasping movement in allocentric and egocentric perspectives. Proc. Biol. Sci. 278, 2142–2149 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Cangelosi, T. Ogata, Speech and language in humanoid robots, in Section: Human-Humanoid Interaction, Humanoid Robotics: A Reference (Springer, London, 2017)Google Scholar
  31. 31.
    J.D. Carlin, A.J. Calder, N. Kriegeskorte, H. Nili, J.B. Rowe, A head view-invariant representation of gaze direction in anterior superior temporal sulcus. Curr. Biol. 21, 1817–1821 (2011)CrossRefGoogle Scholar
  32. 32.
    G. Castellano, S.D. Villalba, A. Camurri, Recognising human emotions from body movement and gesture dynamics, in Picard Affective Computing and Intelligent Interaction. ACII 2007, ed. by A.C.R. Paiva, R. Prada, R.W. Lecture Notes in Computer Science, vol. 4738 (Springer, Berlin/Heidelberg, 2007), pp. 71–82Google Scholar
  33. 33.
    T. Chaminade, G. Cheng, Social cognitive neuroscience and humanoid robotics. J. Physiol. Paris 103, 286–295 (2009)CrossRefGoogle Scholar
  34. 34.
    T. Charman, S. Baron-Cohen, J. Swettenham, G. Baird, A. Cox, A. Drew, Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cogn. Dev. 15, 481–498 (2000)CrossRefGoogle Scholar
  35. 35.
    F. Cid, J.A. Prado, P. Bustos, P. Nunez, A real time and robust facial expression recognition and imitation approach for affective human-robot interaction using Gabor filtering. IEEE Int. Conf. Intell. Robot. Syst. (2013).  https://doi.org/10.1109/IROS.2013.6696662
  36. 36.
    M. Cook, Gaze and mutual gaze in social encounters. Am. Sci. 65, 328–333 (1977)Google Scholar
  37. 37.
    S. Costa, F. Soares, C. Santos, Facial expressions and gestures to convey emotions with a humanoid robot. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.) 8239 LNAI, 542–551, (2013)Google Scholar
  38. 38.
    A. Curioni, G. Knoblich, N. Sebanz, Joint action in humans – a model for human-robot interactions? in Section: Human-Humanoid Interaction, Humanoid Robotics: A Reference. (Springer, London, 2017)Google Scholar
  39. 39.
    Y. Demiris, B. Khadhouri, Hierarchical attentive multiple models for execution and recognition of actions. Robot. Auton. Syst. 54, 361–369 (2006)CrossRefGoogle Scholar
  40. 40.
    M.W. Doniec, G. Sun, B. Scassellati, Active learning of joint attention, in Humanoid Robots, 2006 6th IEEE-RAS International Conference on (2006), pp. 34–39Google Scholar
  41. 41.
    A.D. Dragan, K.C.T. Lee, S.S. Srinivasa, Legibility and predictability of robot motion. ACM/IEEE Int. Conf. Human-Robot Interact. (2013).  https://doi.org/10.1109/HRI.2013.6483603
  42. 42.
    J. Driver, G. Davis, P. Ricciardelli, P. Kidd, E. Maxwell, S. Baron-Cohen, Gaze perception triggers reflexive visuospatial orienting. Vis. Cogn. 6, 509–540 (1999)CrossRefGoogle Scholar
  43. 43.
  44. 44.
    P. Ekman, W.V. Friesen, Facial Action Coding System: A Technique for the Measurement of Facial Movement (Consulting Psychologists Press, Palo Alto, 1978)Google Scholar
  45. 45.
    M. Elsabbagh, E. Mercure, K. Hudry, S. Chandler, G. Pasco, T. Charman, A. Pickles, S. Baron-Cohen, P. Bolton, M.H. Johnson, Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Curr. Biol. 22, 338–342 (2012)CrossRefGoogle Scholar
  46. 46.
    T. Falck-Ytter, G. Gredebäck, C. von Hofsten, Infants predict other people’s action goals. Nat. Neurosci. 9, 878–879 (2006)CrossRefGoogle Scholar
  47. 47.
    T. Farroni, G. Csibra, F. Simion, M.H. Johnson, Eye contact detection in humans from birth. Proc. Natl. Acad. Sci. 99, 9602–9605 (2002)CrossRefGoogle Scholar
  48. 48.
    F. Festante, A. Cilia, V. Loiacono, M. Bimbi, L. Fogassi, P.F. Ferrari, Mirror neurons of ventral premotor cortex are modulated by social cues provided by others’ gaze. J. Neurosci. 36, 3145–3156 (2016)CrossRefGoogle Scholar
  49. 49.
    J. Fink, Anthropomorphism and human likeness in the design of robots and human-robot interaction. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.) 7621, 199–208 (2012)Google Scholar
  50. 50.
    J.R. Flanagan, R.S. Johansson, Action plans used in action observation. Nature 424, 769–771 (2003)CrossRefGoogle Scholar
  51. 51.
    A. Frischen, A.P. Bayliss, S.P. Tipper, Gaze cueing of attention: visual attention, social cognition, and individual differences. Psychol. Bull. 133, 694–724 (2007)CrossRefGoogle Scholar
  52. 52.
    V. Gazzola, G. Rizzolatti, B. Wicker, C. Keysers, The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage 35, 1674–1684 (2007)CrossRefGoogle Scholar
  53. 53.
    M.J. Gielniak, C.K. Liu, A.L. Thomaz, Generating human-like motion for robots. Int. J. Robot. Res. 32, 1275–1301 (2013)CrossRefGoogle Scholar
  54. 54.
    M.J. Gielniak, C.K. Liu, A.L. Thomaz, Secondary action in robot motion. Proc. IEEE Int. Work. Robot. Hum. Interact. Commun. (2010).  https://doi.org/10.1109/ROMAN.2010.5598730
  55. 55.
    M.J. Gielniak, A.L. Thomaz, Generating anticipation in robot motion, in RO-MAN, 2011 IEEE (IEEE, 2011), pp. 449–454Google Scholar
  56. 56.
    M.J. Gielniak, A.L. Thomaz, Enhancing interaction through exaggerated motion synthesis. Int. Conf. Human Robot Interact. (2012).  https://doi.org/10.1145/2157689.2157813
  57. 57.
    S. Glasauer, M. Huber, P. Basili, A. Knoll, T. Brandt, Interacting in time and space: investigating human-human and human-robot joint action. Int. Symp. Robot. Hum. Interact. Commun. (2010).  https://doi.org/10.1109/ROMAN.2010.5598638
  58. 58.
    D. Glowinski, N. Dael, A. Camurri, G. Volpe, M. Mortillaro, K. Scherer, Toward a minimal representation of affective gestures. IEEE Trans. Affect. Comput. 2, 106–118 (2011)CrossRefGoogle Scholar
  59. 59.
    M. Gori, A. Sciutti, D. Burr, G. Sandini, Direct and indirect haptic calibration of visual size judgments. PLoS One 6, e25599 (2011)CrossRefGoogle Scholar
  60. 60.
    G. Gredebäck, T. Falck-Ytter, Eye movements during action observation. Perspect. Cogn. Sci. 10, 591–598 (2015)CrossRefGoogle Scholar
  61. 61.
    H. Gunes, M. Pantic, Dimensional emotion prediction from spontaneous head gestures for interaction with sensitive artificial listeners, in Intelligent Virtual Agents. IVA 2010, ed. by J. Allbeck, N. Badler, T. Bickmore, C. Pelachaud, A. Safonova. Lecture Notes in Computer Science, vol. 6356 (Springer, Berlin/Heidelberg, 2010), pp. 371–377CrossRefGoogle Scholar
  62. 62.
    H. Gunes, C. Shan, S. Chen, Y. Tian, Bodily expression for automatic affect recognition. Emot. Recognit. A Pattern Anal. Approach (2015).  https://doi.org/10.1002/9781118910566.ch14Google Scholar
  63. 63.
    J. Hall, T. Tritton, A. Rowe, A. Pipe, C. Melhuish, U. Leonards, Perception of own and robot engagement in human–robot interactions and their dependence on robotics knowledge. Rob. Auton. Syst. 62, 392–399 (2014)CrossRefGoogle Scholar
  64. 64.
    K. Harada, K. Hauser, T. Bretl, J.C. Latombe, Natural motion generation for humanoid robots, in IEEE International Conference on Intelligent Robots and Systems, Beijing (2006), pp. 833–839Google Scholar
  65. 65.
    N. Hu, A. Bestick, G. Englebienne, R. Bajscy, B. Kr, Human intent forecasting using intrinsic kinematic constraints. Int. Conf. Intell. Robot. Syst, in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon (IEEE, 2016), pp. 787–793Google Scholar
  66. 66.
    J. Ido, Y. Matsumoto, T. Ogasawara, R. Nisimura, Humanoid with interaction ability using vision and speech information, in IEEE International Conference on Intelligent Robots and Systems, Beijing (2006), pp. 1316–1321Google Scholar
  67. 67.
    A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning attractor landscapes for learning motor primitives [Online], in Proceedings of the 15th International Conference on Neural Information Processing Systems (MIT Press, Cambridge, MA), pp. 1547–1554. http://dl.acm.org/citation.cfm?id=2968618.2968810
  68. 68.
    T. Iqbal, L.D. Riek, Human robot coordination, in Section: Human-Humanoid Interaction, Humanoid Robotics: A Reference, (Springer, London, 2017)Google Scholar
  69. 69.
    S. Ivaldi, S.M. Anzalone, W. Rousseau, O. Sigaud, M. Chetouani, Robot initiative in a team learning task increases the rhythm of interaction but not the perceived engagement. Front Neurorobot. 8, 1–16 (2014)CrossRefGoogle Scholar
  70. 70.
    G. Johansson, Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14, 201–211 (1973)CrossRefGoogle Scholar
  71. 71.
    R.S. Johansson, G. Westling, A. Bäckström, J.R. Flanagan, Eye-hand coordination in object manipulation. J. Neurosci. 21, 6917–6932 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11517279CrossRefGoogle Scholar
  72. 72.
    F. Kaplan, V.V. Hafner, The challenges of joint attention. Interact. Stud. 7, 135–169 (2006)CrossRefGoogle Scholar
  73. 73.
    M. Karg, A.A. Samadani, R. Gorbet, K. Kuhnlenz, J. Hoey, D. Kulic, Body movements for affective expression: a survey of automatic recognition and generation. IEEE Trans. Affect. Comput. 4, 341–359 (2013)CrossRefGoogle Scholar
  74. 74.
    A. Kendon, Some functions of gaze-direction in social interaction. Acta Psychol. 26, 22–63 (1967)CrossRefGoogle Scholar
  75. 75.
    S.G. Khan, S. Bendoukha, M.N. Mahyuddin, Dynamic control for human-humanoid interaction, in Section: Human-Humanoid Interaction, Humanoid Robotics: A Reference, (Springer, London, 2017)Google Scholar
  76. 76.
    H. Kim, H. Jasso, G. Deák, J. Triesch, A robotic model of the development of gaze following, in 2008 IEEE 7th International Conference on Development and Learning, ICDL, Monterey (2008), pp. 238–243Google Scholar
  77. 77.
    G. Knoblich, S. Butterfill, N. Sebanz, Psychological research on joint action: theory and data. Psychol. Learn. Motiv. Adv. Res. Theory 54. 54, 59–101 (2011)CrossRefGoogle Scholar
  78. 78.
    H.S. Koppula, A. Saxena, Anticipating human activities using object affordances for reactive robotic response. IEEE Trans. Pattern Anal. Mach. Intell. 38, 14–29 (2016)CrossRefGoogle Scholar
  79. 79.
    S. Kumano, K. Otsuka, J. Yamato, E. Maeda, Y. Sato, Pose-invariant facial expression recognition using variable-intensity templates. Int. J. Comput. Vis. 83, 178–194 (2009)CrossRefGoogle Scholar
  80. 80.
    R. Laban, F. Lawrence, Effort (Macdonald and Evans, London, 1947)Google Scholar
  81. 81.
    B. Laeng, S. Sirois, G. Gredebäck, Pupillometry. Perspect. Psychol. Sci. 7, 18–27 (2012)CrossRefGoogle Scholar
  82. 82.
    J. Lasseter, Principles of traditional animation applied to 3D computer animation. ACM SIGGRAPH Comput. Graph 21, 35–44 (1987)CrossRefGoogle Scholar
  83. 83.
    J. Li, The benefit of being physically present: a survey of experimental works comparing copresent robots, telepresent robots and virtual agents. Int. J. Hum. Comput. Stud. 77, 23–27 (2015)CrossRefGoogle Scholar
  84. 84.
    R. Liepelt, W. Prinz, M. Brass, When do we simulate non-human agents? Dissociating communicative and non-communicative actions. Cognition 115, 426–434 (2010)CrossRefGoogle Scholar
  85. 85.
    K.S. Lohan, S.S. Griffiths, A. Sciutti, T.C. Partmann, K.J. Rohlfing, Co-development of manner and path concepts in language, action, and eye-gaze behavior. Top. Cogn. Sci. 6, 492–512 (2014)CrossRefGoogle Scholar
  86. 86.
    K.S. Lohan, H. Lehmann, C. Dondrup, F. Broz, H. Kose, Enriching the human-robot interaction loop with natural, semantic and symbolic gestures, in Section: Human-Humanoid Interaction, Humanoid Robotics: A Reference, (Springer, London, 2017)Google Scholar
  87. 87.
    K.S. Lohan, K.J. Rohlfing, K. Pitsch, J. Saunders, H. Lehmann, C.L. Nehaniv, K. Fischer, B. Wrede, Tutor spotter: proposing a feature set and evaluating it in a robotic system. Int. J. Soc. Robot. 4, 131–146 (2011)CrossRefGoogle Scholar
  88. 88.
    T. Lorenz, A. Weiss, S. Hirche, Synchrony and reciprocity: key mechanisms for social companion robots in therapy and care. Int. J. Soc. Robot. 8, 125–143 (2016)CrossRefGoogle Scholar
  89. 89.
    M.N. Mahyuddin, G. Herrmann, Cooperative robot manipulator control with human “pinning”for robot assistive task execution, in International Conference on Social Robotics. (Springer, 2013), pp. 521–530Google Scholar
  90. 90.
    V. Manera, C. Becchio, A. Cavallo, L. Sartori, U. Castiello, Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Exp. Brain Res. 211, 547–556 (2011)CrossRefGoogle Scholar
  91. 91.
    Y. Matsumoto, A. Zelinsky, An algorithm for real-time stereo vision implementation of head pose and gaze direction measurement, in Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on, Grenoble (2000), pp. 499–504Google Scholar
  92. 92.
    N. Mavridis, A review of verbal and non-verbal human–robot interactive communication. Rob Auton Syst 63, 22–35 (2015)MathSciNetCrossRefGoogle Scholar
  93. 93.
    G. Mehlmann, M. Häring, K. Janowski, T. Baur, P. Gebhard, E . André, Exploring a model of gaze for grounding in multimodal HRI, in Proceedings of the 16th International Conference on Multimodal Interaction – ICMI ‘14. ACM Press, pp. 247–254Google Scholar
  94. 94.
    D. Metaxas, S. Zhang, A review of motion analysis methods for human nonverbal communication computing. Image Vis. Comput. 31, 421–433 (2013)CrossRefGoogle Scholar
  95. 95.
    G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, L. Montesano, The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. 23, 1125–1134 (2010)CrossRefGoogle Scholar
  96. 96.
    R.C. Miall, D.M. Wolpert, Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996)zbMATHCrossRefGoogle Scholar
  97. 97.
    B. Miller, D. Feil-Seifer, Embodiment, situatedness and morphology for humanoid interaction, in Section: Human-Humanoid Interaction, Humanoid Robotics: A Reference, (Springer, London, 2017)Google Scholar
  98. 98.
    S.A.L. Moubayed, G. Skantze, J. Beskow, The Furhat back-projected humanoid head–lip reading, gaze and multi-party interaction. Int. J. Humanoid Robot. 10, 1350005 (2013)CrossRefGoogle Scholar
  99. 99.
    J. Mumm, B. Mutlu, Human-robot proxemics: physical and psychological distancing in human-robot interaction. Design (2011).  https://doi.org/10.1145/1957656.1957786
  100. 100.
    B. Mutlu, T. Shiwa, T. Kanda, H. Ishiguro, N. Hagita, Footing in human-robot conversations: how robots might shape participant roles using gaze cues, in ACM/IEEE International Conference on Human-Robot Interaction (HRI), New York (2009), pp. 61–68Google Scholar
  101. 101.
    K. Nakagawa, K. Shinozawa, H. Ishiguro, T. Akimoto, N. Hagita, Motion modification method to control affective nuances for robots IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 2009 (2009).  https://doi.org/10.1109/IROS.2009.5354205
  102. 102.
    S. Nishio, H. Ishiguro, N. Hagit, Geminoid: teleoperated android of an existing person, in Humanoid Robots: New Developments. (I-Tech Education and Publishing, Vienna), pp. 343–352Google Scholar
  103. 103.
    N. Noceti, A. Sciutti, G. Sandini, Cognition helps vision: recognizing biological motion using invariant dynamic cues. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.) 9280, 676–686 (2015)MathSciNetGoogle Scholar
  104. 104.
    T. Nomura, Empathy as signaling feedback between (humanoid) robots and humans, in Section: Human-Humanoid Interaction, Humanoid Robotics: A Reference, (Springer, London, 2017)Google Scholar
  105. 105.
    D.G. Novick, B. Hansen, K. Ward, Coordinating turn-taking with gaze, in Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP ‘96 Philadelphia (IEEE, 1996), pp. 1888–1891Google Scholar
  106. 106.
    E. Oztop, D.W. Franklin, T. Chaminade, Human – humanoid interaction: is a humanoid robot perceived as a human. Int. J. Humanoid. Robot. 2, 537–559 (2005)CrossRefGoogle Scholar
  107. 107.
    E. Oztop, D. Wolpert, M. Kawato, Mental state inference using visual control parameters. Cogn. Brain Res. 22, 129–151 (2005)CrossRefGoogle Scholar
  108. 108.
    O. Palinko, F. Rea, G. Sandini, A. Sciutti, Eye gaze tracking for a humanoid robot, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). IEEE, pp. 318–324Google Scholar
  109. 109.
    O. Palinko, F. Rea, G. Sandini, A. Sciutti, Robot reading human gaze: why eye tracking is better than head tracking for human-robot collaboration, in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 5048–5054Google Scholar
  110. 110.
    O. Palinko, A. Sciutti, L. Patanè, F. Rea, F. Nori, G. Sandini, Communicative lifting actions in human-humanoid interaction. in IEEE-RAS International Conference on Humanoid Robots (Madrid, 2014)Google Scholar
  111. 111.
    O. Palinko, A. Sciutti, L. Schillingmann, F. Rea, Y. Nagai, G. Sandini, Gaze contingency in turn-taking for human robot interaction: advantages and drawbacks, accepted. 24nd IEEE Int. Symp. Robot Hum. Interact. Commun. (IEEE RO-MAN 2015) (2015).  https://doi.org/10.1109/ROMAN.2015.7333640
  112. 112.
    O. Palinko, A. Sciutti, Y. Wakita, Y. Matsumoto, G. Sandini, If looks could kill: humanoid robots play a gaze-based social game with humans, in IEEE/RAS International Conference of Humanoids Robotics, Cancun (2016)Google Scholar
  113. 113.
    I.-W. Park, J.-Y. Kim, J. Lee, J.-H. Oh, Mechanical design of the humanoid robot platform, HUBO. Adv. Robot. 21, 1305–1322 (2007)CrossRefGoogle Scholar
  114. 114.
    G. Pezzulo, F. Donnarumma, H. Dindo, Human sensorimotor communication: a theory of signaling in online social interactions. PLoS One 8, e79876 (2013)CrossRefGoogle Scholar
  115. 115.
    S. Planalp, V.L. DeFrancisco, D. Rutherford, Varieties of cues to emotion in naturally occurring situations. Cogn. Emot. 10, 137–154 (1996)CrossRefGoogle Scholar
  116. 116.
    F.E. Pollick, H.M. Paterson, A. Bruderlin, A.J. Sanford, Perceiving affect from arm movement. Cognition 82, 51–61 (2001)CrossRefGoogle Scholar
  117. 117.
    F. Rea, P. Muratore, A. Sciutti, 13-year-olds approach human-robot interaction like adults, in 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE, pp. 138–143Google Scholar
  118. 118.
    F. Rea, G. Sandini, G. Metta, Motor biases in visual attention for a humanoid robot, in 2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 779–786Google Scholar
  119. 119.
    G. Rizzolatti, L. Fadiga, L. Fogassi, V. Gallese, Resonance behaviors and mirror neurons. Arch. Ital. Biol. 137, 85–100 (1999)Google Scholar
  120. 120.
    G. Rizzolatti, L. Fadiga, V. Gallese, L. Fogassi, Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3, 131–141 (1996)CrossRefGoogle Scholar
  121. 121.
    K. Ruhland, C.E. Peters, S. Andrist, J.B. Badler, N.I. Badler, M. Gleicher, B. Mutlu, R. McDonnell, A review of eye gaze in virtual agents, social robotics and HCI: behaviour generation, user interaction and perception. Comput. Graph Forum 34, 299–326 (2015)CrossRefGoogle Scholar
  122. 122.
    S. Runeson, G. Frykholm, Visual perception of lifted weight. J. Exp. Psychol. Hum. Percept. Perform. 7, 733–740 (1981)CrossRefGoogle Scholar
  123. 123.
    S. Runeson, G. Frykholm, Kinematic specification of dynamics as an informational basis for person-and-action perception: expectation, gender recognition, and deceptive intention. J. Exp. Psychol. Gen. 112, 585–615 (1983)CrossRefGoogle Scholar
  124. 124.
    A.-A. Samadani, E. Kubica, R. Gorbet, D. Kulić, Perception and generation of affective hand movements. Int. J. Soc. Robot. 5, 35–51 (2013)CrossRefGoogle Scholar
  125. 125.
    G. Sandini, V. Tagliasco, An anthropomorphic retina-like structure for scene analysis. Comput. Graph Image Process 14, 365–372 (1980)CrossRefGoogle Scholar
  126. 126.
    L. Sartori, G. Bucchioni, U. Castiello, When emulation becomes reciprocity. Soc. Cogn. Affect. Neurosci. 8, 662–669 (2013)CrossRefGoogle Scholar
  127. 127.
    K.R. Scherer, Expression of emotion in voice and music. J. Voice 9, 235–248 (1995)CrossRefGoogle Scholar
  128. 128.
    L. Schilbach, B. Timmermans, V. Reddy, A. Costall, G. Bente, T. Schlicht, K. Vogeley, Toward a second-person neuroscience. Behav. Brain Sci. 36, 393–414 (2013)CrossRefGoogle Scholar
  129. 129.
    A.C. Schütz, D.I. Braun, K.R. Gegenfurtner, Eye movements and perception: a selective review. J. Vis. 11, 1–30 (2011)Google Scholar
  130. 130.
    A. Sciutti, C. Ansuini, C. Becchio, G. Sandini, Investigating the ability to read others’ intentions using humanoid robots. Front. Psychol. 6 (2015)Google Scholar
  131. 131.
    A. Sciutti, A. Bisio, F. Nori, G. Metta, L. Fadiga, T. Pozzo, G. Sandini, Measuring human-robot interaction through motor resonance. Int. J. Soc. Robot. 4, 223–234 (2012)CrossRefGoogle Scholar
  132. 132.
    A. Sciutti, A. Bisio, F. Nori, G. Metta, L. Fadiga, G. Sandini, Robots can be perceived as goal-oriented agents. Interact. Stud. 14, 329–350 (2014)CrossRefGoogle Scholar
  133. 133.
    A. Sciutti, K.S. Lohan, G. Gredebäck, B. Koch, K.J. Rohlfing, Language meddles with infants’ processing of observed actions [online]. Front. Robot. AI 3, 46 (2016). http://journal.frontiersin.org/article/10.3389/frobt.2016.00046
  134. 134.
    A. Sciutti, N. Noceti, F. Rea, F. Odone, A. Verri, G. Sandini. The informative content of optical flow features of biological motion, in 37th European Conference on Visual Perception (ECVP 2014), Belgrade (2014)Google Scholar
  135. 135.
    A. Sciutti, L. Patanè, F. Nori, G. Sandini, Understanding object weight from human and humanoid lifting actions. IEEE Trans. Auton. Ment. Dev. 6, 80–92 (2014)CrossRefGoogle Scholar
  136. 136.
    A. Sciutti, L. Patanè, O. Palinko, F. Nori, G. Sandini, Developmental changes in children understanding robotic actions: the case of lifting, in IEEE International conference of Development and Learning and Epigenetic Robotics (ICDL) (2014)Google Scholar
  137. 137.
    A. Sciutti, A. Del Prete, L. Natale, G. Sandini, M. Gori, D. Burr, Perception during interaction is not based on statistical context, in ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo (2013), pp. 225–226Google Scholar
  138. 138.
    S. Sheikhi, J.-M. Odobez, Combining dynamic head pose–gaze mapping with the robot conversational state for attention recognition in human–robot interactions. Pattern Recognit. Lett. (2014).  https://doi.org/10.1016/j.patrec.2014.10.002CrossRefGoogle Scholar
  139. 139.
    S.V. Shepherd, J.T. Klein, R.O. Deaner, M.L. Platt, Mirroring of attention by neurons in macaque parietal cortex. Proc. Natl. Acad. Sci. U. S. A. 106, 9489–9494 (2009)CrossRefGoogle Scholar
  140. 140.
    F. Simion, L. Regolin, H. Bulf, A predisposition for biological motion in the newborn baby. Proc. Natl. Acad. Sci. U. S. A. 105, 809–813 (2008)CrossRefGoogle Scholar
  141. 141.
    E.A. Sisbot, R. Alami, A human-aware manipulation planner. IEEE Trans. Robot. 28, 1045–1057 (2012)CrossRefGoogle Scholar
  142. 142.
    M. Staudte, M.W. Crocker, Visual attention in spoken human-robot interaction. ACM/IEEE Int. Conf. Human-Robot Interact. (2009).  https://doi.org/10.1145/1514095.1514111
  143. 143.
    K. Strabala, M. Lee M. Towards seamless human-robot handovers [online]. J. Human-Robot. Interact. 2: 112–132 (2013). http://humanrobotinteraction.org/journal/index.php/HRI/article/view/114 [17 Nov 2014]CrossRefGoogle Scholar
  144. 144.
    K. Strabala, M.K. Lee, A. Dragan, J. Forlizzi, S.S. Srinivasa, Learning the communication of intent prior to physical collaboration, in 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication. IEEE, pp. 968–973Google Scholar
  145. 145.
    L. Takayama, M. Park, D. Dooley, W. Ju, Expressing thought: improving robot readability with animation principles, in Proceedings of the 6th International Conference on Human-Robot Interaction (ACM Press. New York, 2011), pp. 69–76Google Scholar
  146. 146.
    D. Todorović, Geometrical basis of perception of gaze direction. Vis. Res. 46, 3549–3562 (2006)CrossRefGoogle Scholar
  147. 147.
    A. Vignolo, N. Noceti, F. Rea, A. Sciutti, F. Odone, G. Sandini, Detecting biological motion for human-robot interaction: a link between perception and action. Front. Robot. AI 4 (2017). http://journal.frontiersin.org/article/10.3389/frobt.2017.00014/full
  148. 148.
    A. Vignolo, N. Noceti, A. Sciutti, F. Rea, F. Odone, G. Sandini, The complexity of biological motion: a temporal multi-resolution motion descriptor for human detection in videos, in IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), Cergy-Pontoise (2016)Google Scholar
  149. 149.
    A. Vignolo, F. Rea, N. Noceti, A. Sciutti, F. Odone, G. Sandini, Biological movement detector enhances the attentive skills of humanoid robot iCub, in International Conference on Humanoids Robots (Humanoids), Cancun (2016)Google Scholar
  150. 150.
    D.M. Wolpert, M. Kawato, Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998)CrossRefGoogle Scholar
  151. 151.
    K. Yamane, M. Revfi, T. Asfour. Synthesizing object receiving motions of humanoid robots with human motion database. IEEE Int. Conf. Robot. Autom. (2013).  https://doi.org/10.1109/ICRA.2013.6630788
  152. 152.
    Y. Yoshikawa, K. Shinozawa, H. Ishiguro, N. Hagita, T. Miyamoto, Responsive robot gaze to interaction partner. [Online]. Robot. Sci. Syst. http://www.mi-as.com/wp-content/uploads/datasheets/Responsive Robat Gaze to Interaction Partner.pdf [20 Nov 2014]
  153. 153.
    M. Zecca, N. Endo, S. Momoki, K. Itoh, A. Takanishi, Design of the humanoid robot KOBIAN – preliminary analysis of facial and whole body emotion expression capabilities, in 2008 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, Daejeon (2008), pp. 487–492Google Scholar
  154. 154.
    J. Złotowski, D. Proudfoot, K. Yogeeswaran, C. Bartneck, Anthropomorphism: opportunities and challenges in human–robot interaction. Int. J. Soc. Robot. 7, 347–360 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Giulio Sandini
    • 1
  • Alessandra Sciutti
    • 2
  • Francesco Rea
    • 2
  1. 1.Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
  2. 2.Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations