Advertisement

Tactile Sensing

  • Lorenzo Natale
  • Giorgio Cannata
Reference work entry

Abstract

Research on tactile sensing has been progressing at constant pace. In robotics, tactile sensing is typically studied in the context of object grasping and manipulation. In this domain, the development of robust, multimodal, tactile sensors for robotic hands has supported the study of novel algorithms for in-hand object manipulation, material classification, and object perception. In the field of humanoid robotics, research has focused on solving the challenges that allow developing systems of tactile sensors that can cover large areas of the robot body and can integrate different types of transducers to measure pressure at various frequency bands, acceleration, and temperature. The availability of such systems has extended the application of tactile sensing to whole-body control, autonomous calibration, self-perception, and human-robot interaction. The goal of this chapter is to provide an overview of the technologies for tactile sensing, with particular emphasis on the systems that have been deployed on humanoid robots. We describe the skills that have been implemented with the adoption of these technologies and discuss the main challenges that remain to be addressed.

References

  1. 1.
    X. Yin, T.P. Vinod, R. Jelinek, A flexible high-sensitivity piezoresistive sensor comprising a au nanoribbon-coated polymer sponge. J. Mater. Chem. C 3, 9247–9252 (2015).  https://doi.org/10.1039/C5TC01604E. URL  https://doi.org/10.1039/C5TC01604E
  2. 2.
    W.D. Hillis, A high-resolution imaging touch sensor. Int. J. Robot. Res. 1(2), 33–44 (1982).  https://doi.org/10.1177/027836498200100202. URL http://ijr.sagepub.com/content/1/2/33.abstractCrossRefGoogle Scholar
  3. 3.
    M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, K. Mabuchi, A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sensors J. 4(5), 589–596 (2004).  https://doi.org/10.1109/JSEN.2004.833152CrossRefGoogle Scholar
  4. 4.
    G. Cannata, M. Maggiali, Processing of tactile/force measurements for a fully embedded sensor, in 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (2006), pp. 160–166.  https://doi.org/10.1109/MFI.2006.265617
  5. 5.
    S. Chun, H. Jung, Y. Choi, G. Bae, J.P. Kil, W. Park, A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology. Carbon 94, 982–987 (2015).  https://doi.org/10.1016/j.carbon.2015.07.088. URL http://www.sciencedirect.com/science/article/pii/S0008622315301111CrossRefGoogle Scholar
  6. 6.
    Y. Kato, T. Mukai, T. Hayakawa, T. Shibata, Tactile sensor without wire and sensing element in the tactile region based on eit method, in Sensors, 2007 (IEEE, 2007), pp. 792–795.  https://doi.org/10.1109/ICSENS.2007.4388519
  7. 7.
    T.H.L. Le, P. Maiolino, F. Mastrogiovanni, G. Cannata, A. Schmitz, A toolbox for supporting the design of large-scale capacitive tactile systems, in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on (2011), pp. 153–158.  https://doi.org/10.1109/Humanoids.2011.6100866
  8. 8.
    A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, G. Metta, Methods and technologies for the implementation of large-scale robot tactile sensors. Robot. IEEE. Trans. 3, 389–400 (2011).  https://doi.org/10.1109/TRO.2011.2132930CrossRefGoogle Scholar
  9. 9.
    P. Mittendorfer, G. Cheng, Humanoid multimodal tactile-sensing modules. IEEE Trans. Robot. 27(3), 401–410 (2011).  https://doi.org/10.1109/TRO.2011.2106330CrossRefGoogle Scholar
  10. 10.
    E. Cagatay, P. Khler, P. Lugli, A. Abdellah, Flexible capacitive tactile sensors based on carbon nanotube thin films. IEEE Sensors J. 15(6), 3225–3233 (2015).  https://doi.org/10.1109/JSEN.2015.2404342CrossRefGoogle Scholar
  11. 11.
    P. Gastaldo, L. Pinna, L. Seminara, M. Valle, R. Zunino, Computational intelligence techniques for tactile sensing systems. Sensors 14(6), 10952–10976 (2014).  https://doi.org/10.3390/ s140610952. URL http://www.mdpi.com/1424-8220/14/6/10952
  12. 12.
    T. Taichi, M. Takahiro, I. Hiroshi, H. Norihiro, Automatic categorization of haptic interactions -what are the typical haptic interactions between a human and a robot?, in 2006 6th IEEE-RAS International Conference on Humanoid Robots (2006), pp. 490–496.  https://doi.org/10.1109/ICHR.2006.321318
  13. 13.
    R.S. Dahiya, A. Adami, L. Pinna, C. Collini, M. Valle, L. Lorenzelli, Tactile sensing chips with posfet array and integrated interface electronics. IEEE Sensors J. 14(10), 3448–3457 (2014).  https://doi.org/10.1109/JSEN.2014.2346742CrossRefGoogle Scholar
  14. 14.
    E. Cheung, V.J. Lumelsky, Proximity sensing in robot manipulator motion planning: system and implementation issues. IEEE Trans. Robot. Autom. 5(6), 740–751 (1989).  https://doi.org/10.1109/70.88096CrossRefGoogle Scholar
  15. 15.
    S. Denei, P. Maiolino, E. Baglini, G. Cannata, On the development of a tactile sensor for fabric manipulation and classification for industrial applications, in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (2015), pp. 5081–5086.  https://doi.org/10.1109/IROS.2015.7354092
  16. 16.
    A. Cirillo, F. Ficuciello, C. Natale, S. Pirozzi, L. Villani, A conformable force/tactile skin for physical human–robot interaction. IEEE Robot. Autom. Lett. 1(1), 41–48 (2016).  https://doi.org/10.1109/LRA.2015.2505061CrossRefGoogle Scholar
  17. 17.
    Y. Ohmura, Y. Kuniyoshi, A. Nagakubo, Conformable and scalable tactile sensor skin for curved surfaces, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (2006), pp. 1348–1353.  https://doi.org/10.1109/ROBOT.2006.1641896
  18. 18.
    Y. Ohmura, Y. Kuniyoshi, A. Nagakubo, Conformable and scalable tactile sensor skin for curved surfaces, in IEEE International Conference on Robotics and Automation (2006), pp. 1348–1353.  https://doi.org/10.1109/ROBOT.2006.1641896
  19. 19.
    T.P. Tomo, S. Somlor, A. Schmitz, S. Hashimoto, S. Sugano, L. Jamone, Development of a hall-effect based skin sensor, in SENSORS, 2015 IEEE (2015), pp. 1–4. DOI 10.1109/ ICSENS.2015.7370435Google Scholar
  20. 20.
    E. Torres-Jara, I. Vasilescu, R. Coral, A soft touch: compliant tactile sensors for sensitive manipulation (2016). URL http://hdl.handle.net/1721.1/31220
  21. 21.
    M. Inaba, Y. Hoshino, K. Nagasaka, T. Ninomiya, S. Kagami, H. Inoue, A full-body tactile sensor suit using electrically conductive fabric and strings, in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2 (1996), pp. 450–457.  https://doi.org/10.1109/IROS.1996.570816
  22. 22.
    H. Iwata, S. Sugano, Whole-body covering tactile interface for human robot coordination, in: IEEE International Conference on Robotics and Automation, vol. 4 (2002), pp. 3818–3824.  https://doi.org/10.1109/ROBOT.2002.1014315
  23. 23.
    R. Kageyama, S. Kagami, M. Inaba, H. Inoue, Development of soft and distributed tactile sensors and the application to a humanoid robot, in IEEE International Conference on Systems, Man, and Cybernetics, vol. 2 (1999), pp. 981–986.  https://doi.org/10.1109/ICSMC.1999. 825396
  24. 24.
    T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp, R. Dillmann, ARMAR-III: an integrated humanoid platform for sensory-motor control, in 2006 6th IEEE-RAS International Conference on Humanoid Robots (2006), pp. 169–175.  https://doi.org/10.1109/ICHR.2006.321380
  25. 25.
    O. Kerpa, K. Weiss, H. Worn, Development of a flexible tactile sensor system for a humanoid robot, in Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, vol. 1 (2003), pp. 1–6.  https://doi.org/10.1109/IROS.2003.1250596 33
  26. 26.
    T. Minato, Y. Yoshikawa, T. Noda, S. Ikemoto, H. Ishiguro, M. Asada, Cb2: a child robot with biomimetic body for cognitive developmental robotics, in IEEE-RAS International Conference on Humanoid Robots (2007), pp. 557–562.  https://doi.org/10.1109/ICHR.2007.4813926
  27. 27.
    I. Mizuuchi, T. Yoshikai, Y. Sodeyama, Y. Nakanishi, A. Miyadera, T. Yamamoto, T. Niemela, M. Hayashi, J. Urata, Y. Namiki, T. Nishino, M. Inaba, Development of musculoskeletal humanoid kotaro, in IEEE International Conference on Robotics and Automation (2006), pp. 82–87.  https://doi.org/10.1109/ROBOT.2006.1641165
  28. 28.
    Y. Ohmura, Y. Kuniyoshi, Humanoid robot which can lift a 30 kg box by whole body contact and tactile feedback, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2007), pp. 1136–1141.  https://doi.org/10.1109/IROS.2007.4399592
  29. 29.
    T. Mukai, M. Onishi, T. Odashima, S. Hirano, Z. Luo, Development of the tactile sensor system of a human-interactive robot RI-MAN. IEEE Trans. Robot. 24(2), 505–512 (2008).  https://doi.org/10.1109/TRO.2008.917006CrossRefGoogle Scholar
  30. 30.
    P. Mittendorfer, E. Yoshida, G. Cheng, Realizing whole-body tactile interactions with a selforganizing, multi-modal artificial skin on a humanoid robot. Adv. Robot. 29(1), 51–67 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Schmitz, U. Pattacini, F. Nori, L. Natale, G. Metta, Design, realization and sensorization of a dextrous hand: the iCub design choices, in IEEE-RAS International Conference on Humanoid Robots (2010).  https://doi.org/10.1109/ICHR.2010.5686825
  32. 32.
    G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, L. Montesano, The icub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. 23(89), 1125–1134 (2010).  https://doi.org/10.1016/j.neunet.2010.08.010. URL http://www.sciencedirect.com/science/article/pii/S0893608010001619. Social Cognition: From Babies to RobotsCrossRefGoogle Scholar
  33. 33.
    P. Maiolino, M. Maggiali, G. Cannata, G. Metta, L. Natale, A flexible and robust large scale capacitive tactile system for robots. Sensors. J. IEEE 13(10), 3910–3917 (2013).  https://doi.org/10.1109/JSEN.2013.2258149CrossRefGoogle Scholar
  34. 34.
    A. Del Prete, F. Nori, G. Metta, L. Natale, Control of contact forces: the role of tactile feedback for contact localization, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), pp. 4048–4053.  https://doi.org/10.1109/IROS.2012.6385803
  35. 35.
    M. Fumagalli, S. Ivaldi, M. Randazzo, L. Natale, G. Metta, G. Sandini, F. Nori, Force feedback exploiting tactile and proximal force/torque sensing. Auton. Robot. 33(4), 381–398 (2012).  https://doi.org/10.1007/s10514-012-9291-2CrossRefGoogle Scholar
  36. 36.
    A. Roncone, M. Hoffmann, U. Pattacini, G. Metta, Learning peripersonal space representation through artificial skin for avoidance and reaching with whole body surface, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2015), pp. 3366–3373.  https://doi.org/10.1109/IROS.2015.7353846
  37. 37.
    T.B. Martin, R.O. Ambrose, M.A. Diftler, R. Platt, M.J. Butzer, Tactile gloves for autonomous grasping with the nasa/darpa robonaut, in IEEE International Conference on Robotics and Automation, vol. 2 (2004), pp. 1713–1718.  https://doi.org/10.1109/ROBOT.2004. 1308071
  38. 38.
    L. Natale, E. Torres-Jara, A sensitive approach to grasping, in Sixth International Conference on Epigenetic Robotics (2016)Google Scholar
  39. 39.
    D. Goger, N. Gorges, H. Worn, Tactile sensing for an anthropomorphic robotic hand: Hardware and signal processing, in IEEE International Conference on Robotics and Automation, Kobe (2009), pp. 895–901.  https://doi.org/10.1109/ROBOT.2009.5152650
  40. 40.
    N. Wettels, D. Popovic, V.J. Santos, R.S. Johansson, G.E. Loeb, Biomimetic tactile sensor for control of grip, in IEEE 10th International Conference on Rehabilitation Robotics (2007), pp. 923–932. DOI  https://doi.org/10.1109/ICORR.2007.4428534
  41. 41.
    R.K. Oiva, M. Zenker, C. Schrmann, R. Haschke, H.J. Ritter, A highly sensitive 3d–shaped tactile sensor, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2013), pp. 1084–1089.  https://doi.org/10.1109/AIM.2013.6584238 49
  42. 42.
    N. Jamali, M. Maggiali, F. Giovannini, G. Metta, L. Natale, A new design of a fingertip for the icub hand, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2015), pp. 2705–2710.  https://doi.org/10.1109/IROS.2015.7353747
  43. 43.
    Y. Hoshino, M. Inaba, H. Inoue, Model and processing of whole-body tactile sensor suit for human-robot contact interaction, in Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, vol. 3 (1998), pp. 2281–2286.  https://doi.org/10.1109/ROBOT.1998.680663
  44. 44.
    S. Youssefi, S. Denei, F. Mastrogiovanni, G. Cannata, A real-time data acquisition and processing framework for large-scale robot skin. Robot. Auton. Syst. 68(C), 86–103 (2015).  https://doi.org/10.1016/j.robot.2015.01.009. URL  https://doi.org/10.1016/j.robot.2015.01.009
  45. 45.
    S. Youssefi, S. Denei, F. Mastrogiovanni, G. Cannata, Skinware 2.0: A real-time middleware for robot skin. SoftwareX 34, 6–12 (2015).  https://doi.org/10.1016/j.softx.2015.09.001. URL http://www.sciencedirect.com/science/article/pii/S2352711015000102CrossRefGoogle Scholar
  46. 46.
    A. Del Prete, S. Denei, L. Natale, F. Mastrogiovanni, F. Nori, G. Cannata, G. Metta, Skin spatial calibration using force/torque measurements, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2011), pp. 3694–3700.  https://doi.org/10.1109/IROS.2011.6094896
  47. 47.
    P. Mittendorfer, G. Cheng, Open-loop self-calibration of articulated robots with artificial skins, in IEEE International Conference on Robotics and Automation (2012), pp. 4539–4545.  https://doi.org/10.1109/ICRA.2012.6224881
  48. 48.
    G. Cannata, S. Denei, F. Mastrogiovanni, Tactile sensing: steps to artificial somatosensory maps, in 19th International Symposium in Robot and Human Interactive Communication (2010), pp. 576–581.  https://doi.org/10.1109/ROMAN.2010.5598697
  49. 49.
    S. Denei, F. Mastrogiovanni, G. Cannata, Towards the creation of tactile maps for robots and their use in robot contact motion control. Robot. Auton. Syst. 63(Part 3), 293–308 (2015).  https://doi.org/10.1016/j.robot.2014.09.011. URL http://www.sciencedirect.com/science/article/pii/S0921889014001869. Advances in Tactile Sensing and Touch-based Human Robot InteractionCrossRefGoogle Scholar
  50. 50.
    T.S. Dahl, E.A. Swere, A. Palmer, Touch-triggered withdrawal reflexes for safer robots. New Front. Human-Robot. Interact. 18, 281–304 (2011)CrossRefGoogle Scholar
  51. 51.
    A.M. Okamura, N. Smaby, M.R. Cutkosky, An overview of dexterous manipulation, in IEEE International Conference on Robotics and Automation, vol. 1 (2000), pp. 255–262.  https://doi.org/10.1109/ROBOT.2000.844067
  52. 52.
    K. Hang, M. Li, J.A. Stork, Y. Bekiroglu, F.T. Pokorny, A. Billard, D. Kragic, Hierarchical fingertip space: a unified framework for grasp planning and in-hand grasp adaptation. IEEE Trans. Robot. 32(4), 960–972 (2016).  https://doi.org/10.1109/TRO.2016.2588879. URL http://ieeexplore.ieee.org/document/7530865/CrossRefGoogle Scholar
  53. 53.
    J. Schill, J. Laaksonen, M. Przybylski, V. Kyrki, T. Asfour, R. Dillmann, Learning continuous grasp stability for a humanoid robot hand based on tactile sensing, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (IEEE, 2012), pp. 1901–1906. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6290749
  54. 54.
    M. Li, Y. Bekiroglu, D. Kragic, A. Billard, Learning of grasp adaptation through experience and tactile sensing, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2014), pp. 3339–3346. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6943027
  55. 55.
    E.L. Sauser, B.D. Argall, G. Metta, A.G. Billard, Iterative learning of grasp adaptation through human corrections. Robot. Auton. Syst. 60(1), 55–71 (2012).  https://doi.org/10.1016/j.robot.2011.08.012. URL http://linkinghub.elsevier.com/retrieve/pii/S0921889011001631CrossRefGoogle Scholar
  56. 56.
    M. Regoli, U. Pattacini, G. Metta, L. Natale, Hierarchical grasp controller using tactile feedback, in Proceedings of IEEE-RAS International Conference on Humanoid Robots (2016)Google Scholar
  57. 57.
    J. Tegin, S. Ekvall, D. Kragic, J. Wikander, B. Iliev, Demonstration-based learning and control for automatic grasping. Intell. Serv. Robot. 2(1), 23–30 (2009.) URL http://link.springer.com/article/10.1007/s11370-008-0026-3CrossRefGoogle Scholar
  58. 58.
    H.V. Hoof, T. Hermans, G. Neumann, J. Peters, Learning robot in-hand manipulation with tactile features, in IEEE-RAS International Conference on Humanoid Robots (2015), pp. 121–127.  https://doi.org/10.1109/HUMANOIDS.2015.7363524
  59. 59.
    K. Hsiao, P. Nangeroni, M. Huber, A. Saxena, A.Y. Ng, Reactive grasping using optical proximity sensors, in IEEE International Conference on Robotics and Automation (2009), pp. 2098–2105.  https://doi.org/10.1109/ROBOT.2009.5152849
  60. 60.
    G. Petryk, M. Buehler, Dynamic object localization via a proximity sensor network, in IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems (1996), pp. 337–341.  https://doi.org/10.1109/MFI.1996.572197
  61. 61.
    J. Hoelscher, J. Peters, T. Hermans, Evaluation of tactile feature extraction for interactive object recognition, in IEEE-RAS International Conference on Humanoid Robots (IEEE, 2015), pp. 310–317. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7363560
  62. 62.
    V. Chu, I. McMahon, L. Riano, C.G. McDonald, Q. He, J.M. Perez-Tejada, M. Arrigo, N. Fitter, J.C. Nappo, T. Darrell, K.J. Kuchenbecker, Using robotic exploratory procedures to learn the meaning of haptic adjectives, in IEEE International Conference on Robotics and Automation (2013), pp. 3048–3055.  https://doi.org/10.1109/ICRA.2013.6631000
  63. 63.
    D. Xu, G.E. Loeb, J.A. Fishel, Tactile identification of objects using Bayesian exploration, in IEEE International Conference on Robotics and Automation (2013), pp. 3056–3061.  https://doi.org/10.1109/ICRA.2013.6631001
  64. 64.
    N. Jamali, C. Sammut, Material classification by tactile sensing using surface textures, in IEEE International Conference on Robotics and Automation (IEEE, 2010), pp. 2336–2341. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509675
  65. 65.
    J. Sinapov, V. Sukhoy, R. Sahai, A. Stoytchev, Vibrotactile recognition and categorization of surfaces by a humanoid robot. IEEE Trans. Robot. 27(3), 488–497 (2011).  https://doi.org/10.1109/TRO.2011.2127130CrossRefGoogle Scholar
  66. 66.
    S.S. Baishya, B. Berthold, Robust Material Classification with a Tactile Skin Using Deep Learning, Daejeon, 2016Google Scholar
  67. 67.
    J.A. Fishel, V.J. Santos, G.E. Loeb, A robust micro-vibration sensor for biomimetic fingertips, in IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (2008), pp. 659–663.  https://doi.org/10.1109/BIOROB.2008.4762917 17

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.iCub FacilityIstituto Italiano di TecnologiaGenovaItaly
  2. 2.DIBRIS, Università degli Studi di GenovaGenovaItaly

Personalised recommendations