Botulinum Toxin: Present Knowledge and Threats

Reference work entry
Part of the Toxinology book series (TOXI)


Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is the most toxic substance known to humans that causes the clinical condition known as botulism. The classic manifestation involves skeletal muscle paralysis as a result of a presynaptic blockade to the release of acetylcholine. Since the discovery of the toxin about 100 years ago, various clinical forms of botulism have been described comprising classic or foodborne botulism, wound botulism, infant botulism, and inadvertent botulism. Almost all human cases of botulism are caused by one of four serotypes (A, B, E, or F). Inadvertent botulism is the most recent form to be described. It occurs in patients who have been treated with injections of botulinum toxin for dystonic and other movement disorders.

Laboratory proof of botulism is established with the detection of toxin in the patient’s serum, stool, or wound. The most sensitive and widely accepted diagnostic method for BoNTs is the mouse bioassay, which takes 4 days to complete. This clearly cannot meet the immediate need for clinical diagnosis of botulism, botulinum detection in field conditions, and screening of large scale samples. Consequently, the clinical diagnosis of botulism relies on the clinical symptom development, thus limiting the effectiveness of antitoxin treatment. In response to this critical need, many in vitro methods for BoNT detection have been developed. This review is focused on the toxin structure, mechanism of action, detection methods, clinical diagnosis, and therapy including the second-generation vaccines using cell-free expression system as alternate strategy.


  1. Ahn-Yoon S, DeCory TR, Durst RA. Ganglioside-liposome immunoassay for the detection of botulinum toxin. Anal Bioanal Chem. 2004;378:68–75.PubMedGoogle Scholar
  2. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole R, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;285:1059–70.PubMedGoogle Scholar
  3. Attrée O, Guglielmo-Viret V, Gros V, Thullier P. Development and comparison of two immunoassay formats for rapid detection of botulinum neurotoxin type A. J Immunol Methods. 2007;325:78–87.PubMedGoogle Scholar
  4. Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, McWilliams LG, Schmidt JG, Martinez RA, Ashley DA. Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis. 2005;11:1578–83.PubMedPubMedCentralGoogle Scholar
  5. Bigalke H, Rummel A. Medical aspects of toxin weapons. Toxicology. 2005;214(3):210–20.PubMedGoogle Scholar
  6. Boroff DA, Shu-Chen G. Radioimmunoasssay for type A toxin of Clostridium botulinum. Appl Microbiol. 1973;25:545–9.PubMedPubMedCentralGoogle Scholar
  7. Browning LM, Prempeh H, Little C, Houston C, Grant K, Cowden JM. United Kingdom botulism incident management team 2011. An outbreak of food-borne botulism in Scotland, United Kingdom. Euro Surveill 2011;16:20036.Google Scholar
  8. CDC. Notice of CDC’s discontinuation of investigational pentavalent (ABCDE) botulinum toxoid vaccine for workers at risk for occupational exposure to botulinum toxins. Morb Mortal Wkly Rep. 2011;60(42):1454–5.Google Scholar
  9. Chao HY, Wang YC, Tang SS, Liu HW. A highly sensitive immuno polymerase chain reaction assay for Clostridium botulinum neurotoxin type A. Toxicon. 2004;43:27–34.PubMedGoogle Scholar
  10. Cheng LW, Stanker LH. Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J Agric Food Chem. 2013;61(3):755–60.PubMedPubMedCentralGoogle Scholar
  11. Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R. Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. J Immunol Methods. 2012;380(1–2):23–9.PubMedGoogle Scholar
  12. Cooper JG, Spilke CE, Denton M, Jamieson S. Clostridium botulinum: an increasing complication of heroin misuse. Eur J Emerg Med. 2005;12:251–2.PubMedGoogle Scholar
  13. Doellgast GJ, Mark G, Triscott X, Beard A, Cheng T, Roh BH, Roman MG, Hall PA, Brown E. Sensitive enzyme-linked immunosorbent assay for detection of Clostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coagulation assay. J Clin Microbiol. 1993;31:2402–9.PubMedPubMedCentralGoogle Scholar
  14. Ferracci G, Marconi S, Mazuet C, Jover E, Blanchard MP, Seagar M, Popoff M, Lévêque C. A label-free biosensor assay for botulinum neurotoxin B in food and human serum. Anal Biochem. 2011;410(2):281–8.PubMedGoogle Scholar
  15. Ferreira JL. Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J AOAC Int. 2001;84(1):85–8.PubMedGoogle Scholar
  16. Ferreira JL, Eliasberg SJ, Edmonds P, Harrison MA. Comparison of the mouse bioassay and enzymelinked immunosorbent assay procedures for the detection of type A botulinal toxin in food. J Food Prot. 2004;67:203–6.PubMedGoogle Scholar
  17. Frisk ML, Tepp WH, Johnson EA, Beebe DJ. Self-assembled peptide monolayers as a toxin sensing mechanism within arrayed microchannels. Anal Chem. 2009;81:2760–7.PubMedPubMedCentralGoogle Scholar
  18. Gessler F, Pagel-Wieder S, Avondet MA, Böhnel H. Evaluation of lateral flow assays for the detection of botulinum neurotoxin type A and their application in laboratory diagnosis of botulism. Diagn Microbiol Infect Dis. 2007;57(3):243–9.PubMedGoogle Scholar
  19. Han SM, Cho JH, Cho IH, Paek EH, Oh HB, Kim BS, Ryu C, Lee K, Kim YK, Paek SH. Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor for botulinum neurotoxin A. Anal Chim Acta. 2007;587:1–8.PubMedGoogle Scholar
  20. Johnson HM, Brenner K, Angelotti R, Hall HE. Serological studies of types A, B, and E botulinal toxins by passive hemagglutination and bentonite flocculation. J Bacteriol. 1966;91(3):967–74.PubMedPubMedCentralGoogle Scholar
  21. Jones RGA, Marks JD. Use of a new functional dual coating (FDC) assay to measure low toxin levels in serum and food samples following an outbreak of human botulism. J Med Microbiol. 2013;62:828–35.PubMedGoogle Scholar
  22. Kalb SR, Garcia-Rodriguez C, Lou J, Baudys J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR. Extraction of BoNT/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-MS. PLoS One. 2010;5(8):e12237.PubMedPubMedCentralGoogle Scholar
  23. Keller JE. Recovery from botulinum neurotoxin poisoning in vivo. Neuroscience. 2006;139(2):629–37.PubMedGoogle Scholar
  24. Lillehoj PB, Wei F, Ho CM. A self-pumping lab-on-a-chip for rapid detection of botulinum toxin. Lab Chip. 2010;10:2265–70.PubMedGoogle Scholar
  25. Liu Z, Song C, Li Y, Liu F, Zhang K, Sun Y, Li H, Wei Y, Xu Z, Zhang C, Yang A, Xu Z, Yang K, Jin B. Development of highly sensitive chemiluminescence enzyme immunoassay based on the anti-recombinant H(C) subunit of botulinum neurotoxin type A monoclonal antibodies. Anal Chim Acta. 2012;735:23–30.PubMedGoogle Scholar
  26. Marconi S, Ferracci G, Berthomieu M, Kozaki S, Miquelis R, Boucraut J, Seagar M, Leveque C. A protein chip membrane-capture assay for botulinum neurotoxin activity. Toxicol Appl Pharmacol. 2008;233:439–46.PubMedGoogle Scholar
  27. Mason JT, Xu L, Sheng ZM, O’Leary TJ. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nat Biotechnol. 2006;24:555–7.PubMedGoogle Scholar
  28. Naumann M, Boo LM, Ackerman AH, Gallagher CJ. Immunogenecity of botulinum toxins. J Neural Transm. 2013;120:275–90.PubMedGoogle Scholar
  29. O’Brien T, Johnson 3rd LH, Aldrich JL, Allen SG, Liang LT, Plummer AL, Krak SJ, Boiarski AA. The development of immunoassays to four biological threat agents in a bidiffractive grating biosensor. Biosens Bioelectron. 2000;14:815–28.PubMedGoogle Scholar
  30. Pauly D, Kirchner S, Stoermann B, Schreiber T, Kaulfuss S, Schade R, Zbinden R, Avondet MA, Dorner MB, Dorner BG. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst. 2009;134:2028–39.PubMedGoogle Scholar
  31. Pellett S, Tepp WH, Toth SI, Johnson EA. Comparison of the primary rat spinal cord cell (RSC) assay and the mouse bioassay for botulinum neurotoxin type A potency determination. J Pharmacol Toxicol Methods. 2010;61:304–10.PubMedGoogle Scholar
  32. Peruski AH, Johnson III LH, Peruski Jr LF. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Methods. 2002;263:35–41.PubMedGoogle Scholar
  33. Rajaseger G, Saravanan P, Yap EP, Shabbir M, Lee LH, Gopalakrishnakone P. Rapid detection of botulinum neurotoxins A, B, E and F by optical immunoassay. Front Biosci. 2008;1:5432–40.Google Scholar
  34. Rajaseger G, Saravanan P, Lee VJ, Novem V, Yap EP, Shabbir M, Lee LH, Gopalakrishnakone P. Fieldable assay for botulinum neurotoxins. J Med CBR Def. 2010;8:1–21.Google Scholar
  35. Raphael BH, Lautenschlager M, Kahler A, Pai S, Parks BA, Kalb SR, Maslanka SE, Shah S, Magnuson M, Hill VR. Ultrafiltration improves ELISA and Endopep MS analysis of botulinum neurotoxin type A in drinking water. J Microbiol Methods. 2012;90(3):267–72.PubMedGoogle Scholar
  36. Rasetti-Escargueil C, Jones RG, Liu Y, Sesardic D. Measurement of botulinum types A, B and E neurotoxicity using the phrenic nerve-hemidiaphragm: improved precision with in-bred mice. Toxicon. 2009;53(5):503–11.PubMedGoogle Scholar
  37. Rivera VR, Gamez FJ, Keener WK, White JA, Poli MA. Rapid detection of Clostridium botulinum toxins A, B, E and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal Biochem. 2006;353:248–56.PubMedGoogle Scholar
  38. Sachdeva A, Singh AK, Sharma SK. An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism. J Sci Food Agric. 2014;94(4):707–12.PubMedGoogle Scholar
  39. Sapsford KE, Taitt CR, Loo N, Ligler FS. Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl Environ Microbiol. 2005;71:5590–2.PubMedPubMedCentralGoogle Scholar
  40. Scarlatos A, Welt BA, Cooper BY, Archer D, DeMarse T, Chau KV. Methods for detecting botulinum toxin with applicability to screening foods against biological terrorist attacks. J Food Sci. 2005;70(8):R121–30.Google Scholar
  41. Schantz EJ, Kautter DA. Standardized assay for Clostridium botulinum toxins. J Assoc Off Anal Chem. 1978;61:96–9.Google Scholar
  42. Schmidt JJ, Stafford RG, Millard CB. High throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D and F. Anal Biochem. 2001;296:130–7.PubMedGoogle Scholar
  43. Scotcher MC, Cheng LW, Stanker LH. Detection of botulinum neurotoxin serotype B at sub mouse LD(50) levels by a sandwich immunoassay and its application to toxin detection in milk. PLoS One. 2010;5(6):e11047. doi:10.1371/journal.pone.0011047. PubMed PMID: 20548779; PubMed Central PMCID: PMC2883556.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sharma SK, Ferreira JL, Eblen BS, Whiting RC. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl Environ Microbiol. 2006;72(2):1231–8.PubMedPubMedCentralGoogle Scholar
  45. Singh AK, Stanker LH, Sharma SK. Botulinum neurotoxin: where are we with detection technologies? Crit Rev Microbiol. 2013;39(1):43–56. doi:10.3109/1040841X.2012.691457.CrossRefPubMedGoogle Scholar
  46. Wei F, Ho CM. Aptamer-based electrochemical biosensor for botulinum neurotoxin. Anal Bioanal Chem. 2009;393:1943–8.PubMedGoogle Scholar
  47. Wictome M, Newton KA, Jameson K, Dunnigan P, Clarke S, Gaze J, Tauk A, Foster KA, Shone CC. Development of in vitro assays for the detection of botulinum toxins in foods. FEMS Immunol Med Microbiol. 1999;24(3):319–23.PubMedGoogle Scholar
  48. Yu Y, Ma Y, Chen Y, Gong Z, Wang S, Yu W, Sun Z. Binding activity and immunogenic characterization of recombinant C-terminal quarter and half of the heavy chain of botulinum neurotoxin serotype A. Hum Vaccin. 2011;7(10):1090–5.PubMedGoogle Scholar
  49. Zhang Y, Lou J, Jenko KL, Marks JD, Varnum SM. Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays. Anal Biochem. 2012;430(2):185–92.PubMedPubMedCentralGoogle Scholar
  50. Zichel R, Mimran A, Keren A, Barnea A, Steinberger-Levy I, Marcus D, Turgeman A, Reuventy S. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system. Clin Vaccine Immunol. 2010;17(5):784–92.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Technology Development, School of Applied ScienceTemasek PolytechnicSingaporeSingapore
  2. 2.Defence Medical & Environmental Research Institute (DMERI), DSO National Laboratories (Kent Ridge)SingaporeSingapore

Personalised recommendations