Marine Net Primary Production

Reference work entry
Part of the Handbook of Global Environmental Pollution book series (EGEP, volume 1)

Abstract

Marine net primary production by phytoplankton fuels the marine food web. This chapter summarizes the primary controls on marine net primary production, recent temporal patterns in regional and global net primary production, and projections for net marine primary production over the next century.

Keywords

Net primary production Primary productivity Climate change Carbon cycle Photosynthesis Phytoplankton 

Notes

Acknowledgments

The work is funded by the Canada Research Chair and NSERC Discovery programs. I thank A. J. Irwin for his assistance with Fig. 15.1 and manuscript preparation.

References

  1. Arrigo K, van Dijken GL (2011) Secular trends in Arctic Ocean net primary production. J Geophys Res 116:1–15Google Scholar
  2. Arrigo K, van Dijken GL, Bushinsky S (2008) Primary production in the Southern Ocean, 1997–2006. J Geophys Res 113:1–27Google Scholar
  3. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20CrossRefGoogle Scholar
  4. Behrenfeld MJ, O’Malley R, Siegel D, McClain C, Sarmiento J, Feldman G, Milligan A, Falkowski P, Letelier R, Boss E (2006) Climate-driven trends in contemporary ocean productivity. Nature (London) 444:752–755CrossRefGoogle Scholar
  5. Belgrano A, Lindahl O, Hernroth B (1999) North Atlantic oscillation primary productivity and toxic phytoplankton in the Gullmar Fjord, Sweden (1985–1996). Proc R Soc Lond B 266:425–430CrossRefGoogle Scholar
  6. Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:1–4CrossRefGoogle Scholar
  7. Cadee GC, Hegeman J (2002) Phytoplankton in the Marsdiep at the end of the 20th century; 30 years monitoring biomass, primary production, and Phaeocystis blooms. J Sea Res 48:97–110CrossRefGoogle Scholar
  8. Cullen JJ (2001) Plankton: primary production methods. In: Steele J, Thorpe S, Turekian K (eds) Encyclopedia of ocean sciences. Academic Press, San Diego, pp 2277–2284CrossRefGoogle Scholar
  9. Field C, Behrenfeld M, Randerson J, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  10. Gregg WW, Conkright ME, Ginoux P, O’Reilly JE, Casey NW (2003) Ocean primary production and climate: global decadal changes. Geophys Res Lett 30. doi:10.1029/2003GL0116889Google Scholar
  11. Henson SA, Sarmiento JL, Dunne JP, Bopp L, Lima I, Doney SC, John J, Beaulieu C (2010) Detection of anthropogenic climate change in satellite records on ocean chlorophyll and productivity. Biogeosciences 7:621–640CrossRefGoogle Scholar
  12. Kahru M, Kudela R, Manzano-Sarabia M, Mitchell BG (2009) Trends in primary production in the California current detected with satellite data. J Geophys Res 114:1–7Google Scholar
  13. Lindahl O, Andersson L, Belgrano A (2009) Primary phytoplankton productivity in the Gullmar Fjord, Sweden. An evaluation of the 1985–2008 time series. Swedish Environmental Protection Agency. Stockholm, Sweden, pp 1–35Google Scholar
  14. Lohrenz SE, Fahnenstiel GL, Redalje DG, Lang GA, Chen X, Dagg MJ (1997) Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Mar Ecol Prog Ser 155:45–54CrossRefGoogle Scholar
  15. Müller-Karger F, Varela R, Thunell R, Scranton M, Bohrer R, Taylor G, Capelo J, Astor Y, Tappa E, Ho T-Y, Iabichella M, Walsh JJ, Diaz JR (2000) The CARIACO project: understanding the link between the ocean surface and the sinking flux of particulate carbon in the Cariaco Basin. EOS, AGU Trans 81:529CrossRefGoogle Scholar
  16. Raven JA (2011) The cost of photoinhibition. Physiol Plantarum 142:87–104CrossRefGoogle Scholar
  17. Rydberg L, Aertebjerg G, Edler L (2006) Fifty years of primary production measurements in the Baltic entrance region, trends and variability in relation to land-based input of nutrients. J Sea Res 56:1–16CrossRefGoogle Scholar
  18. Saba VS, Friedrichs MAM, Carr ME, Antoine D, Armstrong RA, Asanuma I, Aumont O, Bates NR, Behrenfeld MJ, Bennington V, Bopp L, Bruggeman J, Buitenhuis ET, Church MJ, Ciotti AM, Doney SC, Dowell M, Dunne JP, Dutkiewicz S, Gregg W, Hoepffner N, Hyde KJW, Ishizaka J, Kameda T, Karl DM, Lima I, Lomas MW, Marra J, McKinley GA, Melin F, Moore JK, Morel A, O’Reilly JO, Salihoglu B, Scardi M, Smyth TJ, Tang S, Tjiputra J, Uitz J, Vichi M, Waters K, Westberry TK, Yool A (2010) Challenges of modelling depth-integrated marine primary production over multiple decades: a case study at BATS and HOT. Global Biogeochem Cycles 24:1–21CrossRefGoogle Scholar
  19. Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem Cycles 22:1–21CrossRefGoogle Scholar
  20. Smith KL Jr, Robison BH, Helly JJ, Kaufmann RS, Ruhl HA, Shaw TJ, Twining BS, Vernet M (2007) Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317:478–482CrossRefGoogle Scholar
  21. Tagliabue A, Bopp L, Gehlen M (2011) The response of marine carbon and nutrient cycles to ocean acidification: large uncertainties related to phytoplankton physiological assumptions. Global Biogeochem Cycles 25:1–13CrossRefGoogle Scholar
  22. Westberry TK, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem Cycles 22:1–18CrossRefGoogle Scholar

Additional Recommended Reading

  1. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, NJGoogle Scholar
  2. Falkowski P, Laws EA, Barber RT, Murray JW (2003) Phytoplankton and their role in primary, new, and export production. In: Fasham MJR (ed) Ocean biogeochemistry: the role of the ocean carbon cycle in global change. Springer Berlin Heidelberg, New York, pp 99–121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Environmental Science Program, Mt Allison UniversitySackvilleCanada

Personalised recommendations