Segmented Mirror Telescopes

  • Jerry Nelson
  • Terry Mast
  • Gary Chanan
Reference work entry


Constructing the primary mirror of a telescope out of segments, rather thanfrom a monolithic piece of glass, can drastically reduce the mass of themirror and its material costs, thereby making possible the construction ofoptical/infrared telescopes with very large diameters. However, segmentation alsointroduces a host of complications, involving the fabrication of off-axis optics,novel diffraction effects, active segment control systems, in situ aberrationcorrection, and the optical alignment of large numbers of degrees of freedom.Progress in these latter areas over the last 25 years has led to the successfuldevelopment of the two Keck telescopes, as well as several other segmentedtelescopes in the 10-m class. Giant segmented telescopes of similar design, butwith mirror diameters of 30–40 m, are now in the planning stages, withfirst light expected around the end of the decade. Segmentation has alsomade possible the 6.5-m James Webb Space Telescope, which is currentlyunder construction. In this work, the technical issues associated withsegmentation are discussed and reviewed in detail. Particular attention ispaid to the properties of arrays of hexagonal segments (the segmentationpattern of choice for these telescopes), including their diffraction patternsand algorithms for their active control. Optical alignment issues are alsodiscussed.


Primary Mirror Large Telescope Segment Edge Error Multiplier Secondary Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson,E.,Bai,Z.,Bischof,C.,Blackford,S.,Demmel,J.,Dongarra,J.,Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., & Sorensen, D. 1999, LAPACK User’s Guide (3rd ed.; Philadelphia: Society for Pure and Applied Mathematics)Google Scholar
  2. Andersen, T., Ardeberg, A., Beckers, J., Gontcharov, A., Owner-Petersen, M., & Riewaldt. H. 2004, Euro 50, in Proceedings of the Second Backaskog Workshop on Extremely Large Telescopes, eds. A. Ardeberg and T. Andersen, (Bellingham: SPIE). Proc SPIE 5382, 169–181ADSCrossRefGoogle Scholar
  3. Barnes, T. G., Adams, M. T., Booth, J. A., Cornell, M. E., Gaffney, N. I., Fowler, J. R., Hill, G. J., Hill, G. M., Nance, C. E., Piche, F., Ramsey, L. W., Ricklets, R. L., Spiesman, W. J., & Worthington, P. T. 2000, Commissioning experience with the 9.2-m Hobby-Eberly telescope, in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, ed. T. A. Sebring & T. Andersen (Bellingham: SPIE). Proc. SPIE, 4004, 14–25ADSCrossRefGoogle Scholar
  4. Beckers, J. M., Ulich, B. L., & Williams, J. T. 1982, MMT – the first of the advanced technology telescopes. Proc. SPIE, 332, 2–8ADSCrossRefGoogle Scholar
  5. Booth, J. A., MacQueen, P. J., Good, J. M., Wesley, G. L., Hill, G. J., Palunas, P., Segura, P. R., & Calder, R. E. 2006, The wide field upgrade for the Hobby-Eberly telescope. Proc. SPIE, 6267, 62673W-1–62673W-11Google Scholar
  6. Braunecker, B., Hentschel, R., & Tiziani, H. J. 2008, Advanced Optics Using Aspherical Elements (Bellingham: SPIE), SPIE Press Monograph Vol. PM 173CrossRefGoogle Scholar
  7. Buckley, D. A. H., Meiring, J. G., Swiegers, J., & Swart, G. P. 2004, Many segments and few dollars: SALT solutions for ELTs? Proc. SPIE, 5382, 245–256ADSCrossRefGoogle Scholar
  8. Burgarella, D., Dohlen, K., Ferrari, M., Zamkotsian, F., Hammer, F., Sayede, F., & Rigaut, R. 2002, Large petal telescope for the next-generation Canada-France-Hawaii Telescope, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 93–103ADSCrossRefGoogle Scholar
  9. Chanan, G. A. 1988, Design of the Keck Observatory alignment camera, in Precision Instrument Design, ed. T. C. Bristow & A. E. Hathaway (Bellingham: SPIE). Proc. SPIE, 1036, 59–70ADSCrossRefGoogle Scholar
  10. Chanan, G., & Nelson, J. 2009, Algorithm for the identification of malfunctioning sensors in the control systems of segmented mirror telescopes. Appl. Opt., 48, 6281–6289CrossRefGoogle Scholar
  11. Chanan, G., & Troy, M. 1999, Strehl ratio and modulation transfer function for segmented mirror telescopes as functions of segment phase error. Appl. Opt., 38, 6642–6647ADSCrossRefGoogle Scholar
  12. Chanan, G. A., Troy, M., Dekens, F. G., Michaels, S., Nelson, J., Mast, T., & Kirkman, D. 1998, Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm. Appl. Opt., 37, 140–155ADSCrossRefGoogle Scholar
  13. Chanan, G., Troy, M., & Sirko, E. 1999, Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared. Appl. Opt., 38, 704–713ADSCrossRefGoogle Scholar
  14. Chanan, G. A., Ohara, C., & Troy, M. 2000, Phasing the mirror segments of the Keck telescopes: the narrowband phasing algorithm. Appl. Opt., 39, 4706–4714ADSCrossRefGoogle Scholar
  15. Chanan, G., MacMartin, D., Nelson, J., & Mast, T. 2004, Control and alignment of segmented-mirror telescopes: matrices, modes, and error propagation. Appl. Opt., 43, 1223–1232ADSCrossRefGoogle Scholar
  16. Chevillard, J.-P., Connes, P., Cuisenier, M., Friteau, J., & Marlot, C. 1977, Near infrared astronomical light collector. Appl. Opt., 16, 1817–1833ADSCrossRefGoogle Scholar
  17. Chueca, S., Reyes, M., Schumacher, A., & Montoya, L. 2008, DIPSI: measure of the tip-tilt with a diffraction phase sensing instrument. Proc. SPIE, 7012, 701213-1–701213-11Google Scholar
  18. Cohen, R., Mast, T., & Nelson, J. 1994, Performance of the W. M. Keck telescope active mirror control system, in Advanced Technology Optical Telescopes, ed. V, L. M. Stepp (Bellingham: SPIE). Proc. SPIE, 2199, 105–116ADSCrossRefGoogle Scholar
  19. Cui, X., Su, D.-Q., Wang, Y.-N., Li, G., Lui, G., Zhang, Y., & Li, Y. 2010, The optical performance of LAMOST telescope. Proc. SPIE, 7733, 773309-1–773309-8Google Scholar
  20. Dierickx, P., Beckers, J. L., Brunetto, E., Conan, R., Fedrigo, E., Gilmozzi, R., Hubin, N. N., Koch, F., Lelouarn, M., Marchetti, E., Monnet, G. J., Noethe, L., Quattri, M., Sarazin, M. S., Spyromilio, J., & Yaitskova, N. 2002, The eye of the beholder: designing the OWL, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 151–170ADSCrossRefGoogle Scholar
  21. Esposito, S., Pinna, E., Puglisi, A., Tozzi, A., & Stefanini, P. 2005, Pyramid sensor for segmented mirror alignment. Opt. Lett., 30, 2572–2574ADSCrossRefGoogle Scholar
  22. Fried, D. L. 1966, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. JOSA, 56, 1372–1379ADSCrossRefGoogle Scholar
  23. Gardner, J. P., et al. 2006, The James Webb Space Telescope. Space Sci. Rev., 123, 485–606ADSCrossRefGoogle Scholar
  24. Gerchberg, R. W., & Saxton, W. O. 1972, A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik, 35, 237–246Google Scholar
  25. Gilmozzi, R., & Spyromilio, J. 2008, The 42m European ELT: status, in Ground-Based and Airborne Telescopes II, ed. L. Stepp & R. Gilmozzi (Bellingham: SPIE), 5662, 701219-1–701219-10Google Scholar
  26. Golub, G., & van Loan, C. 1996, Matrix Computations (3rd ed.; London: The Johns Hopkins University Press)Google Scholar
  27. Gonte, F. Y., Yaitskova, N., Dierickx, P., Karban, R., Courteville, A., Schumacher, A., Devaney, N., Esposito, S., Dohlen, K., Ferrari, M., & Montoya, L. 2004, APE: a breadboard to evaluate new phasing technologies for a future European giant optical telescope. Proc. SPIE, 5489, 1184–1191ADSCrossRefGoogle Scholar
  28. Horn D’Arturo G. 1955, Pubblicazioni dell’Osservatorio Astronomico Universitario di Bologna, VI, 6Google Scholar
  29. Jared, R. C., Arthur, A. A., Andreae, S., Biocca, A., Cohen, R. W., Fuertes, J. M., Franck, J., Gabor, G., Llacer, J., Mast, T., Meng, J., Merrick, T., Minor, R., Nelson, J., Orayani, M., Salz, P., Schaefer, B., & Witebsky, C. 1990, The W. M. Keck telescope segmented primary mirror active control system. Proc. SPIE, 1236, 996–1008ADSCrossRefGoogle Scholar
  30. Johns, M. 2008, The Giant Magellan Telescope (GMT). Proc. SPIE, 6986, 698603-1–698603-12Google Scholar
  31. Lloyd-Hart, M., Angel, R., Milton, N. M., Rademacher, M., & Codona, J. 2006, Design of the adaptive optics system for the GMT. Proc. SPIE, 6272, 62720E-1–62720E-12Google Scholar
  32. Lofdahl, M., & Eriksson, H. 2001, An algorithm for resolving 2π ambiguities in interferometric measurements by use of multiple wavelengths. Opt. Eng., 40, 984–990ADSCrossRefGoogle Scholar
  33. Lubliner, J., & Nelson, J. 1980, Stressed mirror polishing: a technique for producing non-axisymmetric mirrors. Appl. Opt., 19, 2332–2340ADSCrossRefGoogle Scholar
  34. MacMartin, D. G., & Chanan, G. A. 2002, Control of the California extremely large telescope primary mirror, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 69–80ADSCrossRefGoogle Scholar
  35. MacMartin, D. G., & Chanan, G. 2004, Measurement accuracy in control of segmented-mirror telescopes. Appl. Opt., 43, 608–615ADSCrossRefGoogle Scholar
  36. Mast, T., & Nelson, J. 1982, Figure control for a fully segmented primary mirror. Appl. Opt., 21, 2631–2641ADSCrossRefGoogle Scholar
  37. Mast, T., & Nelson, J. 2000, Segmented mirror control system hardware for CELT, in Optical Design, Materials, Fabrication, and Maintenance, ed. P. Dierickx (Bellingham: SPIE). Proc. SPIE, 4003, 226–240ADSCrossRefGoogle Scholar
  38. Meng, J. D., Minor, R., Merrick, T., & Gabor, G. 1990, Position control of the mirror figure control actuator for the Keck Observatory ten meter primary mirror. Proc. SPIE, 1236, 1018–1022ADSCrossRefGoogle Scholar
  39. Minor, R. H., Arthur, A. A., Gabor, G., Jackson, H. G., Jr., Jared, R. C., Mast, T. S., & Schaefer, B. A. 1990, Displacement sensors for the primary mirror of the W. M. Keck telescope. Proc. SPIE, 1236, 1009–1017ADSCrossRefGoogle Scholar
  40. Montoya, L. 2004, Applications de l’interferometre de Mach-Zehnder au cophasage des grands telescopes segmentes. Ph.D. Thesis, Universite de ProvenceGoogle Scholar
  41. Nelson, J. E. 2000, Design concepts for the California Extremely Large Telescope (CELT). Proc. SPIE, 4004, 282–289ADSCrossRefGoogle Scholar
  42. Nelson, J., & Sanders, G. H. 2006, TMT status report, in Ground-Based and Airborne Telescopes, ed. L. M. Stepp (Bellingham: SPIE). Proc. SPIE, 6267, 745–761Google Scholar
  43. Nelson, J., & Temple-Raston, M. 1982, The off-axis expansion of conic surfaces. University of California TMT Report No. 91Google Scholar
  44. Nelson, J., Gabor, G., Hunt, L., Lubliner, J., & Mast, T. 1980, Stressed mirror polishing: fabrication of an off-axis section of a paraboloid. Appl. Opt., 19, 2341–2352ADSCrossRefGoogle Scholar
  45. Nelson, J., Lubliner, J., & Mast, T. 1982, Telescope mirror supports: plate deflections on point supports. Proc SPIE, 332, 212–228ADSCrossRefGoogle Scholar
  46. Nelson, J. E., Mast, T. S., & Faber, S. M. 1985, The design of the Keck observatory and telescope. Keck Observatory Report No. 90 (Berkeley: Keck Observatory Science Office)Google Scholar
  47. Noethe, L. 2002, Active optics in modern large optical telescopes. Prog. Opt., 43, 1–69CrossRefGoogle Scholar
  48. Noll, R. J. 1976, Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am., 66, 207–211ADSCrossRefGoogle Scholar
  49. Papadogiannis, A. S., Papadogianni, N. S., Carabelas, A., Tsitomeneas, S., Kyraggelos, P., & Chondros, T. G. 2009, The mirror weapon in Archimedes’ era. (Dordrecht: Springer) Proc. EUCOMES08, 29–36Google Scholar
  50. Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. 1989, Numerical Recipes: The Art of Scientific Computing (1st ed.; New York: Cambridge University Press)Google Scholar
  51. Redding, D. C., Basinger, S. A., Cohen, D., Lowman, A. E., Shi, F., Bely, P. Y. Bowers, C. W., Burg, R., Burns, L. A., Davila, P. S., Dean, B. H., Mosier, G. E., Norton, T. A., Petrone, P., Perkins, B. D., & Wilson, M. 2000, Wavefront control for a segmented deployable space telescope. Proc. SPIE, 4013, 546–558ADSCrossRefGoogle Scholar
  52. Roberts, S. C., Morbey, C. L., Crabtree, D. R., Carlberg, R., Crampton, D., Davidge, T. J., Fitzsimmons, J. T., Gedig, M. H., Halliday, D. J., Hesse, J. E., Herriot, R. G., Oke, J. B., Pazder, J. S., Szeto, K., & Veran, J.-P. 2002, Canadian very large optical telescope technology studies, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 104–115ADSCrossRefGoogle Scholar
  53. Roddier, F. 1988, Curvature sensing and compensation: a new concept in adaptive optics. Appl. Opt., 27, 1223–1225ADSCrossRefGoogle Scholar
  54. Rodriguez Espinosa, J. M., Alvarez, P., & Sanchez, F. 1999, The GTC: an advanced 10m telescope for the ORM. Astrophys. Space Sci., 263, 355–360ADSCrossRefGoogle Scholar
  55. Sabelhaus, P., & Decker, J. 2004, An overview of the James Webb Space Telescope (JWST) project. Proc. SPIE, 5487, 550–563ADSCrossRefGoogle Scholar
  56. Schroeder, D. J. 2000, Astronomical Optics (San Diego, CA: Academic)Google Scholar
  57. Schumacher, A., Devaney, N., & Montoya, L. 2002, Phasing segmented mirrors: a modification of the Keck narrow-band technique and its application to extremely large telescopes. Appl. Opt., 41, 1297–1307ADSCrossRefGoogle Scholar
  58. Shi, F., Chanan, G., Ohara, C., Troy, M., & Redding, D. C. 2004, Experimental verification of dispersed fringe sensing as a segment phasing technique using the Keck telescope. Appl. Opt., 43, 4474–4481ADSCrossRefGoogle Scholar
  59. Sivaramakrishnan, A., Makidon, R. B., Acton, D. S., & Shi, F. 2003, Coarse phasing JWST using dispersed fringe sensing and dispersed Hartmann sensing during commissioning. Space Telescope Science Institute Technical Memorandum STSCI-JWST-TM-2003-0022A, BaltimoreGoogle Scholar
  60. Strom, S. E., Stepp, L. M., & Gregory, B. 2002, Giant segmented mirror telescope: a point design based on science drivers, in Future Giant Telescopes, ed. J. R. P. Angel & R. Gilmozzi (Bellingham: SPIE). Proc. SPIE, 4840, 116–128ADSCrossRefGoogle Scholar
  61. Surdej, I., Yaitskova, N., & Gonte, F. 2010, On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes. Appl. Opt., 49, 4053–4063ADSCrossRefGoogle Scholar
  62. Troy, M., & Chanan, G. 2003, Diffraction effects from giant segmented-mirror telescopes. Appl. Opt., 42, 3745–3753ADSCrossRefGoogle Scholar
  63. West, S. C., Callahan, S., Chaffee, F. H., Davidson, W. B., Derigne, S. T., Fabricant, D. G., Foltz, C. B., Hill, J. M., Nagel, R. H., & Poyner, A. D. 1997, Toward first light for the 6.5-m MMT telescope. Proc. SPIE, 2871, 38–48ADSCrossRefGoogle Scholar
  64. Yaitskova, N., Dohlen, K., Dierickx, P., & Montoya, L. 2005, Mach-Zehnder interferometer for piston and tip-tilt sensing in segmented telescopes: theory and analytical treatment. JOSA A, 22, 1093–1105ADSCrossRefGoogle Scholar
  65. Ziad, A., Schoeck, M., Chanan, G. A., Troy, M., Dekany, R., Lane, B. F., Borgnino, J., & Martin, F. 2004, Comparison of measurements of the outer scale of turbulence by three different techniques. Appl. Opt., 43, 2316–2324ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jerry Nelson
    • 1
  • Terry Mast
    • 2
  • Gary Chanan
    • 3
  1. 1.UC Observatories/Lick ObservatorySanta CruzUSA
  2. 2.UC Observatories/Lick ObservatorySanta CruzUSA
  3. 3.University of CaliforniaIrvineUSA

Personalised recommendations