The Large-Scale Structure of the Universe

  • Alison L. Coil

Abstract

Galaxies are not uniformly distributed in space. On large scales, the Universe displays coherent structure, with galaxies residing in groups and clusters on scales of ∼ 1–3 h − 1 Mpc, which lie at the intersections of long filaments of galaxies that are > 10 h − 1 Mpc in length. Vast regions of relatively empty space, known as voids, contain very few galaxies and span the volume in between these structures. This observed large-scale structure depends both on cosmological parameters and on the formation and evolution of galaxies. Using the two-point correlation function, one can trace the dependence of large-scale structure on galaxy properties, such as luminosity, color, stellar mass, and track its evolution with redshift. Comparison of the observed galaxy clustering signatures with dark matter simulations allows one to model and understand the clustering of galaxies and their formation and evolution within their parent dark matter halos. Clustering measurements can determine the parent dark matter halo mass of a given galaxy population, connect observed galaxy populations at different epochs, and constrain cosmological parameters and galaxy evolution models. This chapter describes the methods used to measure the two-point correlation function in both redshift and real space, presents the current results of how the clustering amplitude depends on various galaxy properties, and discusses quantitative measurements of the structures of voids and filaments. The interpretation of these results with current theoretical models is also presented.

Keywords

Dark Matter Galaxy Cluster Stellar Mass Galaxy Formation Dark Matter Halo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author thanks James Aird, Mirko Krumpe, and Stephen Smith for providing comments on earlier drafts of the text.

References

  1. Adelberger, K. L., et al. 2005, ApJ, 619, 697ADSCrossRefGoogle Scholar
  2. Aragon, van de Weygaert, & Jones, 2010, MNRAS, 408, 2163Google Scholar
  3. Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15ADSCrossRefGoogle Scholar
  4. Baugh, C. M. 1996, MNRAS, 280, 267ADSCrossRefGoogle Scholar
  5. Baugh, C. M., et al. 2004, MNRAS, 351, L44ADSCrossRefGoogle Scholar
  6. Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M., & Lacey, C. G. 2000, MNRAS, 311, 793ADSCrossRefGoogle Scholar
  7. Benson, A. J., Hoyle, F., Torres, F., & Vogeley, M. S. 2003, MNRAS, 340, 160ADSCrossRefGoogle Scholar
  8. Berlind, A. A., & Weinberg, D. H. 2002, ApJ, 575, 587ADSCrossRefGoogle Scholar
  9. Berlind, A. A., et al. 2005, ApJ, 629, 625ADSCrossRefGoogle Scholar
  10. Bernardeau, F., Colombi, S., Gaztañaga, E., & Scoccimarro, R. 2002, PhR, 367, 1ADSMATHGoogle Scholar
  11. Bharadwaj, S., Bhavsar, S. P., & Sheth, J. V. 2004, ApJ, 606, 25ADSCrossRefGoogle Scholar
  12. Bond, N. A., Strauss, M. A., & Cen, R. 2010, MNRAS, 409, 156ADSCrossRefGoogle Scholar
  13. Brodwin, M., et al. 2008, ApJL, 687, L65ADSCrossRefGoogle Scholar
  14. Choi, E., et al. 2010, MNRAS, 406, 320ADSCrossRefGoogle Scholar
  15. Coil, A. L., et al. 2006, ApJ, 644, 671ADSCrossRefGoogle Scholar
  16. Coil, A. L., et al. 2008, ApJ, 672, 153ADSCrossRefGoogle Scholar
  17. Coil, A. L., et al. 2009, ApJ, 701, 1484ADSCrossRefGoogle Scholar
  18. Colberg, J. M., et al. 2005, MNRAS, 360, 216ADSCrossRefGoogle Scholar
  19. Colless, M., et al. 2001, MNRAS, 328, 1039ADSCrossRefGoogle Scholar
  20. Colless, M., 2004, Cosmological Results from the 2dF Galaxy Redshift Survey, Measuring and Modeling the Universe, ed. Freedman W., Carnegie Observatory Astrophysics Series Vol. 2, Cambridge University Press, 196Google Scholar
  21. Conroy, C., Wechsler, R. H., & Kravtsov, A. V. 2006, ApJ, 647, 201ADSCrossRefGoogle Scholar
  22. Conroy, C., et al. 2005, ApJ, 635, 990ADSCrossRefGoogle Scholar
  23. Conroy, C., et al. 2008, ApJ, 679, 1192ADSCrossRefGoogle Scholar
  24. Croton, D. J., & Farrar, G. R. 2008, MNRAS, 386, 2285ADSCrossRefGoogle Scholar
  25. Croton, D. J., Norberg, P., Gaztañaga, E., & Baugh, C. M. 2007, MNRAS, 379, 1562ADSCrossRefGoogle Scholar
  26. Croton, D. J., et al. 2004a, MNRAS, 352, 1232ADSCrossRefGoogle Scholar
  27. Croton, D. J., et al. 2004b, MNRAS, 352, 828ADSCrossRefGoogle Scholar
  28. Croton, D. J., et al. 2005, MNRAS, 356, 1155ADSCrossRefGoogle Scholar
  29. Davis, M., Geller, M. J., & Huchra, J. 1978, ApJ, 221, 1ADSCrossRefGoogle Scholar
  30. Davis, M., Huchra, J., Latham, D. W., & Tonry, J. 1982, ApJ, 253, 423ADSCrossRefGoogle Scholar
  31. Davis, M., & Peebles, P. J. E. 1983, ApJ, 267, 465ADSCrossRefGoogle Scholar
  32. Dressler, A. 1980, ApJ, 236, 351ADSCrossRefGoogle Scholar
  33. Eisenstein, D. J., et al. 2005, ApJ, 633, 560ADSCrossRefGoogle Scholar
  34. El-Ad, H., & Piran, T. 1997, ApJ, 491, 421ADSCrossRefGoogle Scholar
  35. Fisher, K. B., Davis, M., Strauss, M. A., Yahil, A., & Huchra, J. P. 1994, MNRAS, 267, 927ADSGoogle Scholar
  36. Fry, J. N. 1996, ApJL, 461, L65ADSCrossRefGoogle Scholar
  37. Fry, J. N., & Gaztanaga, E. 1993, ApJ, 413, 447ADSCrossRefGoogle Scholar
  38. Gaztañaga, E., Norberg, P., Baugh, C. M., & Croton, D. J. 2005, MNRAS, 364, 620ADSGoogle Scholar
  39. Geller, M. J., & Huchra, J. P. 1989, Science, 246, 897ADSCrossRefGoogle Scholar
  40. Gott, III, J. R., Dickinson, M., & Melott, A. L. 1986, ApJ, 306, 341MathSciNetADSCrossRefGoogle Scholar
  41. Gott, III, J. R., et al. 2005, ApJ, 624, 463ADSCrossRefGoogle Scholar
  42. Gregory & Thompson, 1978, ApJ, 222, 784Google Scholar
  43. Guzzo, L., et al. 2008, Nature, 451, 541ADSCrossRefGoogle Scholar
  44. Hamilton, A. J. S. 1992, ApJL, 385, L5ADSCrossRefGoogle Scholar
  45. Hamilton, A. J. S. 1993, ApJ, 417, 19ADSCrossRefGoogle Scholar
  46. Hamilton, A. J. S. 1998, in ASSL Vol. 231: The Evolving Universe, 185Google Scholar
  47. Hoyle, F., Rojas, R. R., Vogeley, M. S., & Brinkmann, J. 2005, ApJ, 620, 618ADSCrossRefGoogle Scholar
  48. Hoyle, F., & Vogeley, M. S. 2004, ApJ, 607, 751ADSCrossRefGoogle Scholar
  49. Hubble, E. 1934, ApJ, 79, 8ADSCrossRefGoogle Scholar
  50. Hubble, E. P. 1926, ApJ, 64, 321ADSCrossRefGoogle Scholar
  51. Joeveer, Einasto, & Tago, 1978, MNRAS, 185, 357Google Scholar
  52. Kaiser, N. 1984, ApJL, 284, L9ADSCrossRefGoogle Scholar
  53. Kaiser, N. 1987, MNRAS, 227, 1ADSGoogle Scholar
  54. Kamionkowski, M., Verde, L., & Jimenez, R. 2009, JCAP, 1, 10ADSCrossRefGoogle Scholar
  55. Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS, 303, 188ADSCrossRefGoogle Scholar
  56. Kerscher, M., Szapudi, I., & Szalay, A. S. 2000, ApJL, 535, L13ADSCrossRefGoogle Scholar
  57. Kirshner, R. P., Oemler, A., Jr., & Schechter, P. L. 1978, AJ, 83, 1549ADSCrossRefGoogle Scholar
  58. Kravtsov, A. V., et al. 2004, ApJ, 609, 35ADSCrossRefGoogle Scholar
  59. Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64ADSCrossRefGoogle Scholar
  60. Li, C., et al. 2006, MNRAS, 368, 21ADSCrossRefGoogle Scholar
  61. Ma, C.-P., & Fry, J. N. 2000, ApJ, 543, 503ADSCrossRefGoogle Scholar
  62. Maddox, S. J., et al. 2010, A&A, 518, L11ADSCrossRefGoogle Scholar
  63. Madgwick, D. S., et al. 2003, MNRAS, 344, 847ADSCrossRefGoogle Scholar
  64. Mann, R. G., Peacock, J. A., & Heavens, A. F. 1998, MNRAS, 293, 209ADSCrossRefGoogle Scholar
  65. Meneux, B., et al. 2006, A&A, 452, 387ADSCrossRefGoogle Scholar
  66. Mo, H. J., & White, S. D. M. 1996, MNRAS, 282, 347ADSCrossRefGoogle Scholar
  67. Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493ADSCrossRefGoogle Scholar
  68. Nichol, R. C., et al. 2006, MNRAS, 368, 1507ADSCrossRefGoogle Scholar
  69. Norberg, P., et al. 2001, MNRAS, 328, 64ADSCrossRefGoogle Scholar
  70. Ouchi, M., et al. 2004, ApJ, 611, 685ADSCrossRefGoogle Scholar
  71. Ouchi, M., et al. 2005, ApJL, 635, L117ADSCrossRefGoogle Scholar
  72. Pan, D. C., Vogeley, M. S., Hoyle, F., Choi, Y.-Y., & Park, C. 2012, Cosmic voids in Sloan Digital Sky Survey Data Release 7, MNRAS, 421, 926–934, doi:10.1111/j.1365-2966.2011.20197.xADSCrossRefGoogle Scholar
  73. Peacock, J. A., & Smith, R. E. 2000, MNRAS, 318, 1144ADSCrossRefGoogle Scholar
  74. Peacock, J. A., et al. 2001, Nature, 410, 169ADSCrossRefGoogle Scholar
  75. Peebles, P. J. E. 1975, ApJ, 196, 647ADSCrossRefGoogle Scholar
  76. Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe (Princeton, NJ: Princeton University Press)Google Scholar
  77. Peebles, P. J. E. 2001, ApJ, 557, 495ADSCrossRefGoogle Scholar
  78. Postman, M., Lauer, T. R., Szapudi, I., & Oegerle, W. 1998, ApJ, 506, 33ADSCrossRefGoogle Scholar
  79. Roche, N., & Eales, S. A. 1999, MNRAS, 307, 703ADSCrossRefGoogle Scholar
  80. Rojas, R. R., Vogeley, M. S., Hoyle, F., & Brinkmann, J. 2004, ApJ, 617, 50ADSCrossRefGoogle Scholar
  81. Rojas, R. R., Vogeley, M. S., Hoyle, F., & Brinkmann, J. 2005, ApJ, 624, 571ADSCrossRefGoogle Scholar
  82. Sandge & Tammann, 1975, ApJ, 196, 313Google Scholar
  83. Sargent, W. L. W., & Turner, E. L. 1977, ApJL, 212, L3ADSCrossRefGoogle Scholar
  84. Scoccimarro, R. . 2000, ApJ, 544, 597ADSCrossRefGoogle Scholar
  85. Seldner, M., Siebers, B., Groth, E. J., & Peebles, P. J. E. 1977, AJ, 82, 249ADSCrossRefGoogle Scholar
  86. Seljak, U. 2000, MNRAS, 318, 203ADSCrossRefGoogle Scholar
  87. Shane, C. D., & Wirtanen, C. A. 1967, in Pub. Lick Obs. Vol. 22, part 1Google Scholar
  88. Shapley, H., & Ames, A. 1932, Ann. Harv. Coll. Obs., 88, 41ADSGoogle Scholar
  89. Shectman, S. A., et al. 1996, ApJ, 470, 172ADSCrossRefGoogle Scholar
  90. Sheth, R. K., Mo, H. J., & Tormen, G. 2001, MNRAS, 323, 1ADSCrossRefGoogle Scholar
  91. Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119ADSCrossRefGoogle Scholar
  92. Sheth & van de Weygaert, 2004, MNRAS, 350, 517Google Scholar
  93. Sousbie, T., et al. 2008, ApJL, 672, L1ADSCrossRefGoogle Scholar
  94. Tegmark, M., & Peebles, P. J. E. 1998, ApJL, 500, L79ADSCrossRefGoogle Scholar
  95. Tegmark, M., et al. 2004, ApJ, 606, 702ADSCrossRefGoogle Scholar
  96. Tinker, J. L., et al. 2008, ApJ, 686, 53ADSCrossRefGoogle Scholar
  97. Verde, L., et al. 2002, MNRAS, 335, 432ADSCrossRefGoogle Scholar
  98. Wake, D. A., et al. 2011, ApJ, 728, 46ADSCrossRefGoogle Scholar
  99. Weinberg, D. H., Davé, R., Katz, N., & Hernquist, L. 2004, ApJ, 601, 1ADSCrossRefGoogle Scholar
  100. White, S. D. M. 1979, MNRAS, 186, 145ADSGoogle Scholar
  101. York, D. G., et al. 2000, AJ, 120, 1579ADSCrossRefGoogle Scholar
  102. Zehavi, I., et al. 2002, ApJ, 571, 172ADSCrossRefGoogle Scholar
  103. Zehavi, I., et al. 2004, ApJ, 608, 16ADSCrossRefGoogle Scholar
  104. Zehavi, I., et al. 2005, ApJ, 630, 1ADSCrossRefGoogle Scholar
  105. Zehavi, I., et al. 2011, ApJ, 736, 59ADSCrossRefGoogle Scholar
  106. Zheng, Z., Coil, A. L., & Zehavi, I. 2007, ApJ, 667, 760ADSCrossRefGoogle Scholar
  107. Zwicky, F., Herzog, E., & Wild, P. 1968, Catalogue of Galaxies and of Clusters of Galaxies (Pasadena: California Institute of Technology, 1961–1968)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alison L. Coil
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations