Dynamical Evolution of Planetary Systems

  • Alessandro Morbidelli


The apparent regularity of the motion of the giant planets of our solar system suggested for decades that said planets formed onto orbits similar to the current onesand that nothing dramatic ever happened during their lifetime. The discovery of extrasolar planets showed astonishingly that the orbital structure of our planetary system is not typical. Many giant extrasolar planets have orbits with semimajor axes of ∼ 1 AU,and some have even smaller orbital radii, sometimes with orbital periods of just a few days. Moreover, most extrasolar planets have large eccentricities, up to values that only comets have in our solar system. Why is there such a great diversitybetween our solar system and the extrasolar systems, as well as among the extrasolar systems themselves? This chapter aims to give a partial answer to this fundamental question. Its guideline is a discussion of the evolution of our solarsystem, certainly biased by a view that emerges, in part, from a series of works comprising the “Nice model.” According to this view, the giant planets of the solar system migrated radially while they were still embedded in a protoplanetary disk of gas and presumably achieved a multi-resonant orbital configuration, characterized by smaller interorbital spacings and smaller eccentricities and inclinations with respect to the current configuration.The current orbits of the giant planets may have been achieved during a phase of orbital instability, during which the planets acquired temporarily large-eccentricity orbits and all experienced close encounters with at least oneother planet. This instability phase occurred presumably during the putative “Late Heavy Bombardment” of the terrestrial planets, approximately ∼ 3.9 Gy ago (Tera et al. 1974). The interaction with a massive, distant planetesimal disk (the ancestor of the current Kuiper belt) eventually damped the eccentricities of the planets, ending the phase of mutual planetary encounters and parking the planets onto their current, stable orbits. This new view of the evolution of the solar system makes our system not very different from the extrasolar ones. In fact, the best explanation for the large orbital eccentricities of extrasolar planets is that the planets that are observed are the survivors of strong instability phases of original multi-planet systems on quasi-circular orbits. The main difference between the solar system and the extrasolar systems is in the magnitude of such an instability. In the extrasolar systems, encounters among giant planets had to be the norm. In our case, the two major planets (Jupiter and Saturn) never had close encounters with each other: They only encountered “minor” planets like Uranus and/or Neptune. This was probably just mere luck, as simulations show that Jupiter-Saturn encounters in principle could have occurred. Another relevant difference with the extrasolar planets is that, during the gas-disk phase, our giant planets avoided migrating permanently into the inner solar system, thanks to the specific mass ratio of the Jupiter/Saturn pair and the rapid disappearance of the disk soon after the formation of the giant planets. This chapter ends on a note on terrestrial planets. The structure of a terrestrial-planet system depends sensitively on the dynamical evolution of the giant planets and on their final orbits. It appears clear that habitable terrestrial planets, with moderate eccentricity orbits, cannot exist in systems where the giant planets became violently unstable and developed very elliptic orbits. Thus, our very existence is possible only because the instability phase experienced by the giant planets of our solar system was of “moderate” strength.


Solar System Planetary System Giant Planet Terrestrial Planet Protoplanetary Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramov, O., & Mojzsis, S. J. 2009, Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature, 459, 419–422ADSGoogle Scholar
  2. Adams, F. C., & Laughlin, G. 2003, Migration and dynamical relaxation in crowded systems of giant planets. Icarus, 163, 290–306ADSGoogle Scholar
  3. Agnor, C., & Asphaug, E. 2004, Accretion efficiency during planetary collisions. ApJ, 613, L157–L160ADSGoogle Scholar
  4. Agnor, C. B., Canup, R. M., & Levison, H. F. 1999, On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219–237ADSGoogle Scholar
  5. Alibert, Y., Mordasini, C., & Benz, W. 2004, Migration and giant planet formation. A&A, 417, L25–L28ADSGoogle Scholar
  6. Asphaug, E., Agnor, C. B., & Williams, Q. 2006, Hit-and-run planetary collisions. Nature, 439, 155–160ADSGoogle Scholar
  7. Bailey, B. L., & Malhotra, R. 2009, Two dynamical classes of Centaurs. Icarus, 203, 155–163ADSGoogle Scholar
  8. Baldwin, R. B. 2006, Was there ever a Terminal Lunar Cataclysm? With lunar viscosity arguments. Icarus, 184, 308–318ADSGoogle Scholar
  9. Barge, P., & Sommeria, J. 1995, Did planet formation begin inside persistent gaseous vortices? A&A, 295, L1–L4ADSGoogle Scholar
  10. Barnes, R., & Greenberg, R. 2006, Stability limits in extrasolar planetary systems. ApJ, 647, L163–L166ADSGoogle Scholar
  11. Baruteau, C., & Masset, F. 2008, On the corotation torque in a radiatively inefficient disk. ApJ, 672, 1054–1067ADSGoogle Scholar
  12. Batygin, K., & Brown, M. E. 2010, Early dynamical evolution of the solar system: pinning down the initial condition of the nice model. ArXiv e-prints arXiv:1004.5414Google Scholar
  13. Batygin, K., Brown, M. E., & Fraser, W. C. 2011, In-situ formation of the cold classical Kuiper belt. ApJ, 738, p 13.ADSGoogle Scholar
  14. Beauge, C., & Nesvorny, D. 2011, Multiple-planet scattering and the origin of hot Jupiters. ArXiv e-prints arXiv:1110.4392Google Scholar
  15. Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., & Malhotra, R. 2004, The size distribution of trans-neptunian bodies. AJ, 128, 1364–1390ADSGoogle Scholar
  16. Binzel, R. P., Bus, S. J., Burbine, T. H., & Sunshine, J. M. 1996, Spectral properties of near-earth asteroids: evidence for sources of ordinary chondrite meteorites. Science, 273, 946–948ADSGoogle Scholar
  17. Bitsch, B., & Kley, W. 2010, Orbital evolution of eccentric planets in radiative discs. A&A, 523, A30ADSGoogle Scholar
  18. Bitsch, B., & Kley, W. 2011, Range of outward migration and influence of the disc’s mass on the migration of giant planet cores. A&A, 536, A77ADSGoogle Scholar
  19. Bodenheimer, P., Hubickyj, O., & Lissauer, J. J. 2000, Models of the in situ formation of detected extrasolar giant planets. Icarus, 143, 2–14ADSGoogle Scholar
  20. Boley, A. C. 2009, The two modes of gas giant planet formation. ApJ, 695, L53–L57ADSGoogle Scholar
  21. Booth, M., Wyatt, M. C., Morbidelli, A., Moro-Martín, A., & Levison, H. F. 2009, The history of the Solar system’s debris disc: observable properties of the Kuiper belt. MNRAS, 399, 385–398ADSGoogle Scholar
  22. Boss, A. P. 2000, Possible rapid gas giant planet formation in the Solar Nebula and other protoplanetary disks. ApJ, 536, L101–L104ADSGoogle Scholar
  23. Boss, A. P. 2001, Formation of planetary-mass objects by protostellar collapse and fragmentation. ApJ, 551, L167–L170ADSGoogle Scholar
  24. Boss, A. P. 2002, Stellar metallicity and the formation of extrasolar gas giant planets. ApJ, 567, L149–L153ADSGoogle Scholar
  25. Bottke, W. F., Levison, H. F., Nesvorný, D., & Dones, L. 2007, Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus, 190, 203–223ADSGoogle Scholar
  26. Bottke, W. F., Vokrouhlicky, D., Nesvorny, D., Minton, D., Morbidelli, A., & Brasser, R. 2010, The E-belt: a possible missing link in the late heavy bombardment. Lunar Planet. Inst. Sci. Conf. Abstr., 41, 1269ADSGoogle Scholar
  27. Bottke, W. F., Vokrouhlicky, D., Minton, D., Nesvorny, D., Brasser, R., & Simonson, B. 2011, The great archean bombardment, or the late heavy bombardment. Lunar Planet. Inst. Sci. Conf. Abstr., 42, 2591ADSGoogle Scholar
  28. Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K., & Levison, H. F. 2009, Constructing the secular architecture of the solar system II: the terrestrial planets. A&A, 507, 1053–1065ADSGoogle Scholar
  29. Burbine, T. H., Binzel, R. P., Bus, S. J., Buchanan, P. C., Hinrichs, J. L., Hiroi, T., Meibom, A., & Sunshine, J. M. 2000, Forging asteroid-meteorite relationships through reflectance spectroscopy. Lunar Planet. Inst. Sci. Conf. Abstr., 31, 1844ADSGoogle Scholar
  30. Butler, R. P., et al. 2006, Catalog of nearby exoplanets. ApJ, 646, 505–522ADSGoogle Scholar
  31. Cameron, A. G. W. 1978, Physics of the primitive solar accretion disk. Moon Planets, 18, 5–40ADSGoogle Scholar
  32. Canup, R. M., & Asphaug, E. 2001, Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708–712ADSGoogle Scholar
  33. Canup, R. M., & Esposito, L. W. 1996, Accretion of the moon from an impact-generated disk. Icarus, 119, 427–446ADSGoogle Scholar
  34. Canup, R. M., & Ward, W. R. 2006, A common mass scaling for satellite systems of gaseous planets. Nature, 441, 834–839ADSGoogle Scholar
  35. Capobianco, C. C., Duncan, M., & Levison, H. F. 2011, Planetesimal-driven planet migration in the presence of a gas disk. Icarus, 211, 819–831ADSGoogle Scholar
  36. Carpenter, J. M., et al. 2009, Formation and evolution of planetary systems: properties of debris dust around solar-type stars. ApJSS, 181, 197–226ADSGoogle Scholar
  37. Cassen, P. M., Smith, B. F., Miller, R. H., & Reynolds, R. T. 1981, Numerical experiments on the stability of preplanetary disks. Icarus, 48, 377–392ADSGoogle Scholar
  38. Chambers, J. E. 2001, Making more terrestrial planets. Icarus, 152, 205–224ADSGoogle Scholar
  39. Chambers, J. 2006, A semi-analytic model for oligarchic growth. Icarus, 180, 496–513ADSGoogle Scholar
  40. Chambers, J. E., & Cassen, P. 2002, The effects of Nebula surface density profile and giant-planet. Meteoritics and Planetary Science 37, 1523–1540ADSGoogle Scholar
  41. Chambers, J. E., & Wetherill, G. W. 1998, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–327ADSGoogle Scholar
  42. Chapman, C. R., Cohen, B. A., & Grinspoon, D. H. 2007, What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus, 189, 233–245ADSGoogle Scholar
  43. Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, Dynamical outcomes of planet-planet scattering. ApJ, 686, 580–602ADSGoogle Scholar
  44. Chiang, E. I. 2003, Excitation of orbital eccentricities by repeated resonance crossings: requirements. ApJ, 584, 465–471ADSGoogle Scholar
  45. Cohen, B. A., Swindle, T. D., & Kring, D. A. 2000, Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science, 290, 1754–1756ADSGoogle Scholar
  46. Cresswell, P., Dirksen, G., Kley, W., & Nelson, R. P. 2007, On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. A&A, 473, 329–342ADSGoogle Scholar
  47. Crida, A., & Morbidelli, A. 2007, Cavity opening by a giant planet in a protoplanetary disc and effects on planetary migration. MNRAS, 377, 1324–1336ADSGoogle Scholar
  48. Crida, A., Morbidelli, A., & Masset, F. 2006, On the width and shape of gaps in protoplanetary disks. Icarus, 181, 587–604ADSGoogle Scholar
  49. Crida, A., Sándor, Z., & Kley, W. 2008, Influence of an inner disc on the orbital evolution of massive planets migrating in resonance. A&A, 483, 325–337ADSGoogle Scholar
  50. Crida, A., Masset, F., & Morbidelli, A. 2009, Long range outward migration of giant planets, with application to fomalhaut b. ApJ, 705, L148–L152ADSGoogle Scholar
  51. D’Angelo, G., Lubow, S. H., & Bate, M. R. 2006, Evolution of giant planets in eccentric disks. ApJ, 652, 1698–1714ADSGoogle Scholar
  52. Dauphas, N., & Pourmand, A. 2011, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature, 473, 489–492ADSGoogle Scholar
  53. di Sisto, R. P., & Brunini, A. 2007, The origin and distribution of the Centaur population. Icarus, 190, 224–235ADSGoogle Scholar
  54. Durisen, R. H., Boss, A. P., Mayer, L., Nelson, A. F., Quinn, T., & Rice, W. K. M. 2007, Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: University of Arizona Press), 607–622Google Scholar
  55. Fernandez, J. A., & Ip, W.-H. 1984, Some dynamical aspects of the accretion of Uranus and Neptune – the exchange of orbital angular momentum with planetesimals. Icarus, 58, 109–120ADSGoogle Scholar
  56. Ferraz-Mello, S., Beaugé, C., & Michtchenko, T. A. 2003, Evolution of migrating planet pairs in resonance. Celest. Mech. Dyn. Astron., 87, 99–112ADSGoogle Scholar
  57. Fischer, D. A., & Valenti, J. 2005, The planet-metallicity correlation. ApJ, 622, 1102–1117ADSGoogle Scholar
  58. Fogg, M. J., & Nelson, R. P. 2005, Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. A&A, 441, 791–806ADSGoogle Scholar
  59. Fogg, M. J., & Nelson, R. P. 2007, On the formation of terrestrial planets in hot-Jupiter systems. A&A, 461, 1195–1208ADSGoogle Scholar
  60. Ford, E. B., Havlickova, M., & Rasio, F. A. 2001, Dynamical instabilities in extrasolar planetary systems containing two giant planets. Icarus, 150, 303–313ADSGoogle Scholar
  61. Ford, E. B., & Rasio, F. A. 2008, Origins of eccentric extrasolar planets: testing the planet-planet scattering model. ApJ, 686, 621–636ADSGoogle Scholar
  62. Fouchet, T., Moses, J. I., & Conrath, B. J. 2009, Saturn: composition and chemistry, ed. M. Dougherty, L. Esposito, S. Krimigis et al. (Springer). Saturn from Cassini-Huygens, 83Google Scholar
  63. Fuentes, C. I., & Holman, M. J. 2008, a SUBARU archival search for faint trans-neptunian objects. AJ, 136, 83–97ADSGoogle Scholar
  64. Gáspár, A., Rieke, G. H., Su, K. Y. L., Balog, Z., Trilling, D., Muzzerole, J., Apai, D., & Kelly, B. C. 2009, The low level of debris disk activity at the time of the late heavy bombardment: a spitzer study of Praesepe. ApJ, 697, 1578–1596ADSGoogle Scholar
  65. Goldreich, P., & Sari, R. 2003, Eccentricity evolution for planets in gaseous disks. ApJ, 585, 1024–1037ADSGoogle Scholar
  66. Goldreich, P., & Tremaine, S. 1979, The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ, 233, 857–871MathSciNetADSGoogle Scholar
  67. Goldreich, P., & Tremaine, S. 1980, Disk-satellite interactions. ApJ, 241, 425–441MathSciNetADSGoogle Scholar
  68. Goldreich, P., Lithwick, Y., & Sari, R. 2004, Final stages of planet formation. ApJ, 614, 497–507ADSGoogle Scholar
  69. Gomes, R. S., Morbidelli, A., & Levison, H. F. 2004, Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus, 170, 492–507ADSGoogle Scholar
  70. Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469ADSGoogle Scholar
  71. Gradie, J., & Tedesco, E. 1982, Compositional structure of the asteroid belt. Science, 216, 1405–1407ADSGoogle Scholar
  72. Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. 1978, Planetesimals to planets – numerical simulation of collisional evolution. Icarus, 35, 1–26ADSGoogle Scholar
  73. Greenzweig, Y., & Lissauer, J. J. 1992, Accretion rates of protoplanets. II – Gaussian distributions of planetesimal velocities. Icarus, 100, 440–463ADSGoogle Scholar
  74. Guillot, T. 2005, The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci., 33, 493–530ADSGoogle Scholar
  75. Guillot, T., & Hueso, R. 2006, The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. MNRAS, 367, L47–L51ADSGoogle Scholar
  76. Guillot, T., Santos, N. C., Pont, F., Iro, N., Melo, C., & Ribas, I. 2006, A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A, 453, L21–L24ADSGoogle Scholar
  77. Haisch, K. E., Jr., Lada, E. A., & Lada, C. J. 2001, Disk frequencies and lifetimes in young clusters. ApJ, 553, L153–L156ADSGoogle Scholar
  78. Hansen, B. M. S. 2009, Formation of the terrestrial planets from a narrow annulus. ApJ, 703, 1131–1140ADSGoogle Scholar
  79. Hartmann, W. K., Ryder, G., Dones, L., & Grinspoon, D. 2000, The time-dependent intense bombardment of the primordial earth/moon system, in Origin of the Earth and Moon, ed. R. M. Canup, K. Righter, et al. (Tucson: University of Arizona Press), 493–512Google Scholar
  80. Hartmann, W. K., Quantin, C., & Mangold, N. 2007, Possible long-term decline in impact rates. 2. Lunar impact-melt data regarding impact history. Icarus, 186, 11–23ADSGoogle Scholar
  81. Hayashi, C. 1981, Structure of the Solar Nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the Nebula. Prog. Theor. Phys. Suppl., 70, 35–53ADSGoogle Scholar
  82. Henrard, J. 1993, The adiabatic invariants in classical mechanics. Dyn. Rep., 2, 117–235MathSciNetGoogle Scholar
  83. Hillenbrand, L. A., Carpenter, J. M., Kim, J. S., Meyer, M. R., Backman, D. E., Moro-Martín, A., Hollenbach, D. J., Hines, D. C., Pascucci, I., & Bouwman, J. 2008, The complete census of 70 μm-bright Debris Disks within “the Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like Stars. ApJ, 677, 630–656ADSGoogle Scholar
  84. Horn, B., Lyra, W., Mac Low, M.-M., & Sándor, Z. 2012, Orbital migration of interacting low-mass planets in evolutionary radiative turbulent models. ArXiv e-prints arXiv:1202.1868Google Scholar
  85. Ida, S., & Lin, D. N. C. 2004, Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. ApJ, 616, 567–572Google Scholar
  86. Ida, S., & Lin, D. N. C. 2008, Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-earths. ApJ, 685, 584–595Google Scholar
  87. Ida, S., & Makino, J. 1993, Scattering of planetesimals by a protoplanet – slowing down of runaway growth. Icarus, 106, 210ADSGoogle Scholar
  88. Ida, S., Bryden, G., Lin, D. N. C., & Tanaka, H. 2000, Orbital migration of neptune and orbital distribution of trans-neptunian objects. ApJ, 534, 428–445ADSGoogle Scholar
  89. Johansen, A., Youdin, A., & Mac Low, M.-M. 2009, Particle clumping and planetesimal formation depend strongly on metallicity. ApJ, 704, L75–L79ADSGoogle Scholar
  90. Jurić, M., & Tremaine, S. 2008, Dynamical origin of extrasolar planet eccentricity distribution. ApJ, 686, 603–620ADSGoogle Scholar
  91. Kalas, P., Graham, J. R., Chiang, E., Fitzgerald, M. P., Clampin, M., Kite, E. S., Stapelfeldt, K., Marois, C., & Krist, J. 2008, Optical images of an exosolar planet, 25 light-years from Earth. Science, 322, 1345ADSGoogle Scholar
  92. Kelsall, T., et al. 1998, The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. ApJ, 508, 44–73Google Scholar
  93. Kenyon, S. J., & Bromley, B. C. 2006, Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. AJ, 131, 1837–1850Google Scholar
  94. Kenyon, S. J., Bromley, B. C., O’Brien, D. P., & Davis, D. R. 2008, Formation and collisional evolution of Kuiper belt objects, in The Solar System Beyond Neptune, ed. M. A. Barucci et al. (Tucson: University of Arizona Press), 293–313Google Scholar
  95. Kirsh, D. R., Duncan, M., Brasser, R., & Levison, H. F. 2009, Simulations of planet migration driven by planetesimal scattering. Icarus, 199, 197–209ADSGoogle Scholar
  96. Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., Jacobsen, S. B., Yin, Q.-Z., & Halliday, A. N. 2009, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta, 73, 5150–5188ADSGoogle Scholar
  97. Kley, W., & Crida, A. 2008, Migration of protoplanets in radiative discs. A&A, 487, L9–L12ADSGoogle Scholar
  98. Kley, W., & Dirksen, G. 2006, Disk eccentricity and embedded planets. A&A, 447, 369–377ADSzbMATHGoogle Scholar
  99. Kley, W., Peitz, J., & Bryden, G. 2004, Evolution of planetary systems in resonance. A&A, 414, 735–747ADSGoogle Scholar
  100. Kley, W., Lee, M. H., Murray, N., & Peale, S. J. 2005, Modeling the resonant planetary system GJ 876. A&A, 437, 727–742ADSGoogle Scholar
  101. Kokubo, E., & Genda, H. 2010, Formation of terrestrial planets from protoplanets under a realistic accretion condition. ApJ, 714, L21–L25ADSGoogle Scholar
  102. Kokubo, E., & Ida, S. 1998, Oligarchic growth of protoplanets. Icarus, 131, 171–178ADSGoogle Scholar
  103. Kokubo, E., Kominami, J., & Ida, S. 2006, Formation of terrestrial planets from protoplanets. I statistics of basic dynamical properties. ApJ, 642, 1131–1139ADSGoogle Scholar
  104. Lambrechts, M., & Johansen, A. 2012, Rapid growth of gas-giant cores by pebble accretion. A&A (in press)Google Scholar
  105. Levison, H. F., & Agnor, C. 2003, The role of giant planets in terrestrial planet formation. AJ, 125, 2692–2713ADSGoogle Scholar
  106. Levison, H. F., & Morbidelli, A. 2007, Models of the collisional damping scenario for ice-giant planets and Kuiper belt formation. Icarus, 189, 196–212ADSGoogle Scholar
  107. Levison, H. F., Lissauer, J. J., & Duncan, M. J. 1998, Modeling the diversity of outer planetary systems. AJ, 116, 1998–2014ADSGoogle Scholar
  108. Levison, H. F., Dones, L., Chapman, C. R., Stern, S. A., Duncan, M. J., & Zahnle, K. 2001, Could the Lunar “Late Heavy Bombardment” Have Been Triggered by the Formation of Uranus and Neptune? Icarus, 151, 286–306ADSGoogle Scholar
  109. Levison, H. F., Morbidelli, A., Gomes, R., & Backman, D. 2007, Planet migration in planetesimal disks, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: University of Arizona Press), 669–684Google Scholar
  110. Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K. 2008, Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus, 196, 258–273ADSGoogle Scholar
  111. Levison, H. F., Bottke, W. F., Gounelle, M., Morbidelli, A., Nesvorný, D., & Tsiganis, K. 2009, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 460, 364–366ADSGoogle Scholar
  112. Levison, H. F., Thommes, E., & Duncan, M. J. 2010, Modeling the formation of giant planet cores. I. evaluating key processes. AJ, 139, 1297–1314Google Scholar
  113. Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorny, D., & Gomes, R. 2011, Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. AJ, 142, 152ADSGoogle Scholar
  114. Lin, D. N. C., & Ida, S. 1997, On the origin of massive eccentric planets. ApJ, 477, 781ADSGoogle Scholar
  115. Lin, D. N. C., & Papaloizou, J. 1986a. On the tidal interaction between protoplanets and the primordial solar nebula. II – self-consistent nonlinear interaction. ApJ, 307, 395–409Google Scholar
  116. Lin, D. N. C., & Papaloizou, J. 1986b, On the tidal interaction between protoplanets and the protoplanetary disk. III – orbital migration of protoplanets. ApJ, 309, 846–857ADSGoogle Scholar
  117. Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature, 380, 606–607ADSGoogle Scholar
  118. Lodders, K. 2003, Solar system abundances and condensation temperatures of the elements. ApJ, 591, 1220–1247ADSGoogle Scholar
  119. Lynden-Bell, D., & Pringle, J. E. 1974, The evolution of viscous discs and the origin of the Nebular variables. MNRAS, 168, 603–637ADSGoogle Scholar
  120. Lyra, W., Johansen, A., Klahr, H., & Piskunov, N. 2009a. Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. A&A, 493, 1125–1139ADSGoogle Scholar
  121. Lyra, W., Johansen, A., Zsom, A., Klahr, H., & Piskunov, N. 2009b. Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks. A&A, 497, 869–888ADSGoogle Scholar
  122. Lyra, W., Paardekooper, S.-J., & Mac Low, M.-M. 2010, Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. ApJ, 715, L68–L73ADSGoogle Scholar
  123. Malhotra, R. 1993, The origin of Pluto’s peculiar orbit. Nature, 365, 819–821ADSGoogle Scholar
  124. Malhotra, R. 1995, The origin of pluto’s orbit: implications for the solar system beyond Neptune. AJ, 110, 420ADSGoogle Scholar
  125. Marchi, S., Bottke, W. F., Kring, D. A., & Morbidelli, A. 2012, The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett., 325, 27–38ADSGoogle Scholar
  126. Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., & Doyon, R. 2008, Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 1348ADSGoogle Scholar
  127. Marzari, F., & Weidenschilling, S. J. 2002, Eccentric extrasolar planets: the jumping Jupiter model. Icarus, 156, 570–579ADSGoogle Scholar
  128. Marzari, F., Baruteau, C., & Scholl, H. 2010, Planet-planet scattering in circumstellar gas disks. A&A, 514, L4ADSGoogle Scholar
  129. Masset, F. S., & Casoli, J. 2010, Saturated torque formula for planetary migration in viscous disks with thermal diffusion: recipe for protoplanet population synthesis. ApJ, 723, 1393–1417ADSGoogle Scholar
  130. Masset, F., & Snellgrove, M. 2001, Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS, 320, L55–L59ADSGoogle Scholar
  131. Masset, F. S., Morbidelli, A., Crida, A., & Ferreira, J. 2006, Disk surface density transitions as protoplanet traps. ApJ, 642, 478–487ADSGoogle Scholar
  132. Maurer, P., Eberhardt, P., Geiss, J., Grogler, N., Stettler, A., Brown, G. M., Peckett, A., & Krahenbuhl, U. 1978, Pre-Imbrian craters and basins – ages, compositions and excavation depths of Apollo 16 breccias. Geochim. Cosmochim. Acta, 42, 1687–1720ADSGoogle Scholar
  133. Milani, A., Nobili, A. M., & Carpino, M. 1987, Secular variations of the semimajor axes – theory and experiments. A&A, 172, 265–279ADSzbMATHGoogle Scholar
  134. Militzer, B., & Hubbard, W. B. 2009, Comparison of Jupiter interior models derived from first-principles simulations. Astrophys. Space Sci., 322, 129–133ADSGoogle Scholar
  135. Min, M., Dullemond, C. P., Kama, M., & Dominik, C. 2011, The thermal structure and the location of the snow line in the protosolar Nebula: axisymmetric models with full 3-D radiative transfer. Icarus, 212, 416–426ADSGoogle Scholar
  136. Minton, D. A., & Malhotra, R. 2009, A record of planet migration in the main asteroid belt. Nature, 457, 1109–1111ADSGoogle Scholar
  137. Moeckel, N., & Armitage, P. J. 2012, Hydrodynamic outcomes of planet scattering in transitional discs. MNRAS, 419, 366–376ADSGoogle Scholar
  138. Moekel, N., Raymond, S. N., & Armitage, Ph. J. 2008, Extrasolar planets eccentricities from scattering in the presence of residual gas-disks. ApJ, 688, 1361–1367ADSGoogle Scholar
  139. Moorhead, A. V., & Adams, F. C. 2005, Giant planet migration through the action of disk torques and planet scattering. Icarus, 178, 517–539ADSGoogle Scholar
  140. Morbidelli, A., & Crida, A. 2007, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus, 191, 158–171ADSGoogle Scholar
  141. Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., & Cyr, K. E. 2000, Source regions and time scales for the delivery of water to Earth. Meteorit. Planet. Sci., 35, 1309–1320ADSGoogle Scholar
  142. Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. 2007, Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. AJ, 134, 1790–1798ADSGoogle Scholar
  143. Morbidelli, A., Crida, A., Masset, F., & Nelson, R. P. 2008a, Building giant-planet cores at a planet trap. A&A, 478, 929–937ADSGoogle Scholar
  144. Morbidelli, A., Levison, H. F., & Gomes, R. 2008b. The dynamical structure of the Kuiper belt and its primordial origin, in The Solar System Beyond Neptune, ed. M. A. Barucci et al. (Tucson: University of Arizona Press), 275–292Google Scholar
  145. Morbidelli, A., Brasser, R., Gomes, R., Levison H. F., & Tsiganis, K., 2010, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. AJ, 140, 1391–1401ADSGoogle Scholar
  146. Morbidelli, A., Marchi, S., & Bottke, W. F. 2012, The saw timeline of the first billion year of Lunar bombardment. LPI Contrib., 1649, 53–54ADSGoogle Scholar
  147. Morishima, R., Stadel, J., & Moore, B. 2010, From planetesimals to terrestrial planets: N-body simulations including the effects of Nebular gas and giant planets. Icarus, 207, 517–535ADSGoogle Scholar
  148. Morfill, G. E., & Voelk, H. J. 1984, Transport of dust and vapor and chemical fractionation in the early protosolar cloud. ApJ, 287, 371–395ADSGoogle Scholar
  149. Nelson, R. P. 2005, On the orbital evolution of low mass protoplanets in turbulent, magnetised disks. A&A, 443, 1067–1085ADSGoogle Scholar
  150. Nelson, R. P., & Papaloizou, J. C. B. 2003, The interaction of a giant planet with a disc with MHD turbulence – II. The interaction of the planet with the disc. MNRAS, 339, 993–1005Google Scholar
  151. Nesvorný, D. 2011, Young solar system’s fifth giant planet? ApJ, 742, L22ADSGoogle Scholar
  152. Nesvorný, D., & Morbidelli, A., 2012, Statistical study of the early solar systems instability with 4, 5 and 6 giant planets. AJ (in press)Google Scholar
  153. Nesvorný, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlický, D., & Gounelle, M. 2010, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. ApJ, 713, 816–836Google Scholar
  154. Nettelmann, N., Holst, B., Kietzmann, A., French, M., Redmer, R., & Blaschke, D. 2008, Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. ApJ, 683, 1217–1228ADSGoogle Scholar
  155. Neukum, G. 1983, Habilitation Dissertation for Faculty Membership (Munich: University of Munich)Google Scholar
  156. Neukum, G., & Ivanov, B. A. 1994, Crater size distributions and impact probabilities on Earth from Lunar, terrestrial-planet, and asteroid cratering data, in Hazards Due to Comets and Asteroids, ed. T. Gehrels (Tucson: University of Arizona Press), 359Google Scholar
  157. Neukum, G., & Wilhelms, D. E. 1982, Ancient lunar impact record. Lunar Planet. Inst. Sci. Conf. Abstr., 13, 590–591ADSGoogle Scholar
  158. Norman, M. D., Duncan, R. A., & Huard, J. J. 2010, Imbrium provenance for the Apollo 16 Descartes terrain: argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim. Cosmochim. Acta, 74, 763–783ADSGoogle Scholar
  159. O’Brien, D. P., Morbidelli, A., & Levison, H. F. 2006, Terrestrial planet formation with strong dynamical friction. Icarus, 184, 39–58ADSGoogle Scholar
  160. O’Brien, D. P., Morbidelli, A., & Bottke, W. F. 2007, The primordial excitation and clearing of the asteroid belt – Revisited. Icarus, 191, 434–452ADSGoogle Scholar
  161. Öpik, E. J., 1976, Interplanetary Encounters: Close Range Gravitational Interactions (Elsevier, New York)Google Scholar
  162. Paardekooper, S.-J., & Mellema, G. 2006, Halting type I planet migration in non-isothermal disks. A&A, 459, L17–L20ADSGoogle Scholar
  163. Paardekooper, S.-J., & Papaloizou, J. C. B. 2009, On corotation torques, horseshoe drag and the possibility of sustained stalled or outward protoplanetary migration. MNRAS, 394, 2283–2296ADSGoogle Scholar
  164. Paardekooper, S.-J., Baruteau, C., Crida, A., & Kley, W. 2010, A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. MNRAS, 401, 1950–1964Google Scholar
  165. Papaloizou, J. C. B., Nelson, R. P., & Masset, F. 2001, Orbital eccentricity growth through disc-companion tidal interaction. A&A, 366, 263–275ADSGoogle Scholar
  166. Papanastassiou, D. A., & Wasserburg, G. J. 1971a. Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro formation. Earth Planet. Sci. Lett., 12, 36ADSGoogle Scholar
  167. Papanastassiou, D. A., & Wasserburg, G. J. 1971b. Lunar chronology and evolution from Rb-Sr studies of Apollo 11 and 12 samples. Earth Planet. Sci. Lett., 11, 37ADSGoogle Scholar
  168. Petit, J.-M., Morbidelli, A., & Chambers, J. 2001, The primordial excitation and clearing of the asteroid belt. Icarus, 153, 338–347ADSGoogle Scholar
  169. Pierens, A., & Nelson, R. P. 2008, Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. A&A, 482, 333–340ADSzbMATHGoogle Scholar
  170. Podolak, M., & Zucker, S. 2004, A note on the snow line in protostellar accretion disks. Meteorit. Planet. Sci., 39, 1859–1868ADSGoogle Scholar
  171. Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 62–85ADSGoogle Scholar
  172. Rafikov, R. R. 2004, Fast accretion of small planetesimals by protoplanetary cores. AJ, 128, 1348–1363ADSGoogle Scholar
  173. Rasio, F. A., & Ford, E. B. 1996, Dynamical instabilities and the formation of extrasolar planetary systems. Science, 274, 954–956ADSGoogle Scholar
  174. Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus, 168, 1–17ADSGoogle Scholar
  175. Raymond, S. N., Quinn, T., & Lunine, J. I. 2005, Terrestrial planet formation in disks with varying surface density profiles. ApJ, 632, 670–676ADSGoogle Scholar
  176. Raymond, S. N., Quinn, T., & Lunine, J. I. 2006a, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus, 183, 265–282Google Scholar
  177. Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006b. Exotic Earths: forming habitable worlds with giant Planet migration. Science, 313, 1413–1416ADSGoogle Scholar
  178. Raymond, S. N., Quinn, T., & Lunine, J. I. 2007, High-resolution simulations of the final assembly of Earth-like Planets. 2. Water delivery and planetary habitability. Astrobiology, 7, 66–84ADSGoogle Scholar
  179. Raymond, S. N., Barnes, R., Veras, D., Armitage, P. J., Gorelick, N., & Greenberg, R. 2009a, Planet-Planet scattering leads to tightly packed planetary systems. ApJ, 696, L98–L101ADSGoogle Scholar
  180. Raymond, S. N., O’Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009b. Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus, 203, 644–662ADSGoogle Scholar
  181. Raymond, S. N., Armitage, P. J., Moro-Martín, A., Booth, M., Wyatt, M. C., Armstrong, J. C., Mandell, A. M., Selsis, F., & West, A. A. 2011, Debris disks as signposts of terrestrial planet formation. A&A, 530, A62ADSGoogle Scholar
  182. Ryder, G., 2002, Mass flux in the ancient Earth-Moon system and the benign implications for the origin of life on Earth. J. Geophys. Res.-Planets, 107, 6–14Google Scholar
  183. Sándor, Z., Lyra, W., & Dullemond, C. P. 2011, Formation of planetary cores at type I migration traps. ApJ, 728, L9ADSGoogle Scholar
  184. Saslaw, W. C. 1985, Thermodynamics and galaxy clustering – relaxation of N-body experiments. ApJ, 297, 49–60ADSGoogle Scholar
  185. Stamatellos, D., & Whitworth, A. P. 2008, Can giant planets form by gravitational fragmentation of discs? A&A, 480, 879–887ADSGoogle Scholar
  186. Stewart, G., & Wetherill, G. 1988, Evolution of planetesimal velocities. Icarus, 79, 542–553ADSGoogle Scholar
  187. Shakura, N. I., & Sunyaev, R. A. 1973, Black holes in binary systems. Observational appearance. A&A, 24, 337–355Google Scholar
  188. Stöffler, D., & Ryder, G. 2001, Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci. Rev., 96, 9–54ADSGoogle Scholar
  189. Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, Three-Dimensional Interaction between a Planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. ApJ, 565, 1257–1274Google Scholar
  190. Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. 1974, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett., 22, 1ADSGoogle Scholar
  191. Thommes, E. W., Duncan, M. J., & Levison, H. F. 1999, The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature, 402, 635–638ADSGoogle Scholar
  192. Thommes, E. W., Duncan, M. J., & Levison, H. F. 2003, Oligarchic growth of giant planets. Icarus, 161, 431–455ADSGoogle Scholar
  193. Thommes, E., Nagasawa, M., & Lin, D. N. C. 2008, Dynamical shake-up of planetary systems. II N-body simulations of solar system terrestrial planet formation induced by secular resonance sweeping. ApJ, 676, 728–739Google Scholar
  194. Tiscareno, M. S., & Malhotra, R. 2003, The dynamics of known centaurs. AJ, 126, 3122–3131 Trail, D., Mojzsis, S. J., & Harrison, T. M. 2007, Thermal events documented in Hadean zircons by ion microprobe depth profiles. Geochim. Cosmochim. Acta, 71, 4044–4065Google Scholar
  195. Trilling, D. E., Bryden, G., Beichman, C. A., Rieke, G. H., Su, K. Y. L., Stansberry, J. A., Blaylock, M., Stapelfeldt, K. R., Beeman, J. W., & Haller, E. E. 2008, Debris disks around sun-like stars. ApJ, 674, 1086–1105ADSGoogle Scholar
  196. Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459–461ADSGoogle Scholar
  197. Turner, G., Cadogan, P. H., & Yonge, C. J. 1973, Apollo 17 age determinations. Nature, 242, 513–515ADSGoogle Scholar
  198. Valley J. W., Peck W. H., King E. M., & Wilde S. A. 2002, A cool early Earth. Geology, 30, 351–354ADSGoogle Scholar
  199. Valsecchi, A., & Manara, G. B. 1997, Dynamics of comets in the outer planetary region. II. Enhanced planetary masses and orbital evolutionary paths. A&A, 323, 986–998Google Scholar
  200. Veras, D., & Armitage, P. J. 2004, Outward migration of extrasolar planets to large orbital radii. MNRAS, 347, 613–624ADSGoogle Scholar
  201. Veras, D., Crepp, J. R., & Ford, E. B. 2009, Formation, survival, and detectability of planets beyond 100 AU. ApJ, 696, 1600–1611ADSGoogle Scholar
  202. Walsh, K. J., Morbidelli, A., Raymond, S. N. O’Brien, D. P., & Mandell, A. M. 2011, A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206–209ADSGoogle Scholar
  203. Ward, W. R. 1986, Density waves in the solar Nebula – differential Lindblad torque. Icarus, 67, 164–180ADSGoogle Scholar
  204. Ward, W. R. 1997, Protoplanet migration by Nebula tides. Icarus, 126, 261–281ADSGoogle Scholar
  205. Weidenschilling, S. J. 1977, The distribution of mass in the planetary system and solar Nebula. Astrophys. Space Sci., 51, 153–158ADSGoogle Scholar
  206. Weidenschilling, S. J., & Davis, D. R. 1985, Orbital resonances in the solar Nebula – implications for planetary accretion. Icarus, 62, 16–29ADSGoogle Scholar
  207. Weidenschilling, S. J., & Marzari, F. 1996, Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature, 384, 619–621ADSGoogle Scholar
  208. Weidenschilling, S. J., Spaute, D., Davis, D. R., Marzari, F., & Ohtsuki, K. 1997, Accretional evolution of a planetesimal swarm. Icarus, 128, 429–455ADSGoogle Scholar
  209. Wetherill, G. W. 1992, An alternative model for the formation of the asteroids. Icarus, 100, 307–325ADSGoogle Scholar
  210. Wetherill, G. W., & Stewart, G. R. 1989, Accumulation of a swarm of small planetesimals. Icarus, 77, 330–357ADSGoogle Scholar
  211. Wetherill, G. W., & Stewart, G. R. 1993, Formation of planetary embryos – effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190ADSGoogle Scholar
  212. Villeneuve, J., Chaussidon, M., & Libourel, G. 2009, Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science, 325, 985–988ADSGoogle Scholar
  213. Wasserburg, G. J., & Papanastassiou, D. A. 1971, Age of an Apollo 15 mare basalt: lunar crust and mantle evolution. Earth Planet. Sci. Lett., 13, 97ADSGoogle Scholar
  214. Wong, M. H., Mahaffy, P. R., Atreya, S. K., Niemann, H. B., & Owen, T. C. 2004, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus, 171, 153–170ADSGoogle Scholar
  215. Wyatt, M. C., Smith, R., Greaves, J. S., Beichman, C. A., Bryden, G., & Lisse, C. M. 2007, Transience of hot dust around sun-like stars. ApJ, 658, 569–583ADSGoogle Scholar
  216. Zhang, H., & Zhou, J.-L. 2010, On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter-Saturn configuration. ApJ, 714, 532–548Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alessandro Morbidelli
    • 1
  1. 1.Observatory of NiceNiceCedex 4, France

Personalised recommendations