Encyclopedia of Mathematics Education

2014 Edition
| Editors: Stephen Lerman

Didactic Contract in Mathematics Education

  • Guy BrousseauEmail author
  • Bernard Sarrazy
  • Jarmila Novotná
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-4978-8_46

Introduction

Teachers manage didactical situations that create and exploit mathematical situations where practices are exercised and students’ mathematical knowledge is developed. The study of the didactical contract concerns the compatibility on this precise subject of the aspirations and requirements of the students, the teachers, the parents, and the society.

Definition

A “didactical contract” is an interpretation of the commitments, the expectations, the beliefs, the means, the results, and the penalties envisaged by one of the protagonists of a didactical situation (student, teacher, parents, society) for him- or herself and for each of the others, à propos of the mathematical knowledge being taught (Brousseau and Otte 1989; Brousseau 1997). The objective of these interpretations is to account for the actions and reactions of the partners in a didactical situation.

The didactical contract can be broken down into two parts: a contract of devolution – the teacher organizes the...

Keywords

Didactical situations Mathematical situations Didactical contract Didactique Milieu Devolution Institutionalization 
This is a preview of subscription content, log in to check access.

References

  1. Balacheff N (1988) Contract and custom: two registers of didactical interactions (trans: P. Herbst). Math Educat Univ Georgia Athens 9(2):23–29Google Scholar
  2. Brousseau G (1997) Theory of didactical situations in mathematics (eds and trans: Balacheff N, Cooper M, Sutherland R, Warfield V). Kluwer, Dordrecht/Boston/LondonGoogle Scholar
  3. Brousseau G (2005) The study of the didactical conditions of school learning in mathematics: In: Hoffmann JL, Falk S (eds) Activity and sign grounding mathematics education, Springer, New York, pp 159–168Google Scholar
  4. Brousseau G, Brousseau N, Warfield V (2002) An experiment on the teaching of statistics and probability. J Math Behav 20:363–441Google Scholar
  5. Brousseau G, Centeno J (1991) Rôle de la mémoire didactique de l’enseignant. Rech Didact Math 11(2–3):167–210Google Scholar
  6. Brousseau G, Davis RB, Werner T (1986) Observing students at work. In: Christiansen B, Howson AG, Otte M (eds) Perspective on mathematics education, vol II. D. Reidel, Dordrecht, pp 205–241Google Scholar
  7. Brousseau G, Otte M (1989) The fragility of knowledge. In: Bishop A, Mellin-Olsen S, Van Dormolen J (eds) Mathematical knowledge: its growth through teaching. Kluwer, pp 13–38Google Scholar
  8. Brousseau G, Warfield V (1998) The case of Gaël. J Math Behav 18(1):1–46Google Scholar
  9. Chopin M-P (2011) Le temps de l’enseignement L’avancée du savoir et la gestion des hétérogénéités dans la classe Presses Universitaires de RennesGoogle Scholar
  10. Clanché P, Sarrazy B (2002) Contribution à l’étude des rapports entre l’expérience quotidienne ‘réelle’ et l’expérience quotidienne scolaire dans l’enseignement des mathématiques: Cas de l’enseignement d’une structure additive dans un cours préparatoire kanak. Rech Didact Math 22(1):7–30Google Scholar
  11. Novotná J, Hošpesová A (2007) What is the price of Topaze? In: Woo J-H, Lew H-C, Park K-S, Seo D-Y (eds) Proceedings of 31st conference of the international group for the psychology of mathematics education, vol 4. PME, Seoul, pp 25–32Google Scholar
  12. Novotná J, Sarrazy B (2011) Didactical variability in teacher education. In: Zaslavsky O, Sullivan P (eds) Constructing knowledge for teaching secondary mathematics: tasks to enhance prospective and practicing teacher learning. Springer, New York, pp 103–116, Section 4.1: Teachers’ learning to attend to and enhance students’ problem solving skills and strategiesGoogle Scholar
  13. Perrin-Glorian MJ, Hersant M (2003) Milieu et contrat didactique, outils pour l’analyse de séquences ordinaires. Rech Didact Math 23(2):217–276Google Scholar
  14. Sarrazy B (1996) La sensibilité au contrat didactique: rôle des arrière-plans dans la résolution de problèmes d’arithmétique au cycle trois. Thèse de doctorat en Sciences de l’éducation, Bordeaux 2Google Scholar
  15. Sarrazy B (1997) Sens et situations: une mise en question de l’enseignement des stratégies métacognitives en mathématiques. Rech Didact Math 17(2):135–166Google Scholar
  16. Sarrazy B (2002) Effects of variability on responsiveness to the didactic contract in problem-solving among pupils of 9–10 years. Eur J Psychol Educ XVII(4):321–341Google Scholar
  17. Sarrazy B, Novotná J (2005) Didactical contract: theoretical frame for the analysis of phenomena of teaching mathematics. In: Novotná J (ed) Proceedings SEMT 05. Univerzita Karlova v Praze, Pedagogická fakulta, Prague, pp 33–45Google Scholar
  18. Schubauer-Leoni M-L (1986) Le contrat didactique: un cadre interprétatif pour comprendre les savoirs manifestés par les élèves en Mathématiques. J Eur Psychol Éduc 1(Spécial 2):139–153Google Scholar
  19. Searle J (1979) Expression and meaning: studies in the theory of speech acts. Cambridge University Press, CambridgeGoogle Scholar
  20. Wittgenstein L (1953) Philosophical investigations. Blackwell, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Guy Brousseau
    • 1
    Email author
  • Bernard Sarrazy
    • 2
  • Jarmila Novotná
    • 3
  1. 1.Institut Universitaire de Formation des maîtres d’Aquitaine, MathématiquesLaboratoire Cultures Education Societes (LACES), EA 4140, Anthropologie et diffusion des savoir, Univ. Bordeaux – FranceBordeaux CedexFrance
  2. 2.Departement Sciences de l’EducationLaboratoire Cultures Education Societes (LACES), EA 4140, Anthropologie et diffusion des savoir, Univ. Bordeaux – FranceBordeaux CedexFrance
  3. 3.Faculty of EducationCharles University in PraguePrahaCzech Republic