Advertisement

Ethics of Functional Neurosurgery

  • Robert Bauer
  • Alireza Gharabaghi
Reference work entry

Abstract

Functional neurosurgery became one of the most dynamic fields in surgery developing from a subdiscipline to a major driver of innovations and novel therapeutic interventions. Despite an inglorious history rooted in unspecific psychosurgical lesioning techniques, functional neurosurgery has evolved to a highly precise intervention based on cutting edge imaging, image guidance, and physiological technology offering the last treatment resort for a growing number of neurological and psychiatric indications. Novel devices including closed-loop systems for neuromodulation and prosthetic control promise further new treatment options in the near future.

These dynamic developments are changing the traditional field of related ethical issues significantly. This necessitates that functional neurosurgeons, patients, and society in general will have to deal with new ethical issues in the areas of neuroenhancement, privacy of brain-related information, and patient autonomy regarding control of implanted devices. These issues add to those already inherent to this discipline, e.g., challenges to neurosurgeons from the perspective of professional ethics in the specific context of brain intervention or adequate patient information about the increasing unpredictability of risks and benefits.

Functional neurosurgery will continue to open new doors of modulating brain function; concurrently arising ethical issues need to be addressed by ethicists and physicians jointly and ahead of time.

Keywords

Amyotrophic Lateral Sclerosis Deep Brain Stimulation Reference Class Neurosurgical Intervention Awake Craniotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abosch, A., Timmermann, L., Bartley, S., et al. (2012). An international survey of deep brain stimulation procedural steps. Stereotactic and Functional Neurosurgery, 91(1), 1–11.CrossRefGoogle Scholar
  2. Appleby, B., & Rabins, P. (2009). Ethical considerations in psychiatric surgery. In A. Lozano, P. Gildenberg, & R. Tasker (Eds.), Textbook of stereotactic and functional neurosurgery (pp. 2853–2866). Berlin/Heidelberg: Springer. Available at: http://dx.doi.org/10.1007/978-3-540-69960-6_170.
  3. Beauchamp, T. L., & Childress, J. F. (2009). Principles of biomedical ethics. New York: Oxford University Press.Google Scholar
  4. Benabid, A. L., Chabardes, S., Torres, N., et al. (2009a). Functional neurosurgery for movement disorders: A historical perspective. Progress in Brain Research, 175, 379–391.CrossRefGoogle Scholar
  5. Benabid, A. L., Chabardes, S., Mitrofanis, J., & Pollak, P. (2009b). Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurology, 8(1), 67–81.CrossRefGoogle Scholar
  6. Benabid, A. L., Costecalde, T., Torres, N., et al. (2011). Deep brain stimulation: BCI at large, where are we going to? Progress in Brain Research, 194, 71–82.CrossRefGoogle Scholar
  7. Berenyi, A., Belluscio, M., Mao, D., & Buzsaki, G. (2012). Closed-loop control of epilepsy by transcranial electrical stimulation. Science, 337(6095), 735–737.CrossRefGoogle Scholar
  8. Bhadra, N., & Chae, J. (2009). Implantable neuroprosthetic technology. NeuroRehabilitation, 25(1), 69–83.Google Scholar
  9. Boorse, C. (1977). Health as a theoretical concept. Philosophy of Science, 44(4), 542–573.CrossRefGoogle Scholar
  10. Borchers, S., Himmelbach, M., Logothetis, N., & Karnath, H.-O. (2012). Direct electrical stimulation of human cortex – the gold standard for mapping brain functions? Nature Reviews Neuroscience, 13(1), 63–70.Google Scholar
  11. Brickman, P., Rabinowitz, V. C., Karuza, J., et al. (1982). Models of helping and coping. American Psychologist, 37, 368–384.CrossRefGoogle Scholar
  12. Bronte-Stewart, H., Barberini, C., Koop, M. M., et al. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Experimental Neurology, 215(1), 20–28.CrossRefGoogle Scholar
  13. Brumberg, J. S., & Guenther, F. H. (2010). Development of speech prostheses: Current status and recent advances. Expert Review of Medical Devices, 7(5), 667–679.CrossRefGoogle Scholar
  14. Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26(3), 321–352.CrossRefGoogle Scholar
  15. Carter, A., & Hall, W. (2011). Proposals to trial deep brain stimulation to treat addiction are premature. Addiction, 106, 235–237.CrossRefGoogle Scholar
  16. Cheney, P. D., Giffin, D. M., & Van Acker, G. M. 3rd. (2012). Neural hijacking: Action of high-frequency electrical stimulation on cortical circuits. Neuroscientist, 1–8.Google Scholar
  17. Clausen, J. (2011). Conceptual and ethical issues with brain-hardware interfaces. Current Opinion in Psychiatry, 24(6), 495–501.Google Scholar
  18. Daly, J. J., & Wolpaw, J. R. (2008). Brain–computer interfaces in neurological rehabilitation. Lancet Neurology, 7(11), 1032–1043.CrossRefGoogle Scholar
  19. Dzirasa, K., & Lisanby, S. H. (2012). How does deep brain stimulation work? Biological Psychiatry, 72(11), 892–894.CrossRefGoogle Scholar
  20. Elder, J. B., Hoh, D. J., Oh, B. C., et al. (2008). The future of cerebral surgery: A kaleidoscope of opportunities. Neurosurgery, 62(6 Suppl 3), 1555–1579; discussion 1579–1582.Google Scholar
  21. Farah, M. J., & Heberlein, A. S. (2007). Personhood and neuroscience: Naturalizing or nihilating? The American Journal of Bioethics, 7(1), 37–48.CrossRefGoogle Scholar
  22. Fasano, A., Daniele, A., & Albanese, A. (2012). Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurology, 11(5), 429–442.CrossRefGoogle Scholar
  23. Ford, P., & Henderson, J. (2004). Functional neurosurgical intervention: Neuroethics in the operating room. In J. Illes (Ed.), Neuroethics. Oxford: Oxford University Press.Google Scholar
  24. Ford, P., & Kubu, C. (2005). Caution in leaping from functional imaging to functional neurosurgery. The American Journal of Bioethics, 5(2), 23–25.CrossRefGoogle Scholar
  25. Fuchs, T. (2006). Ethical issues in neuroscience. Current Opinion in Psychiatry, 19(6), 600–607.CrossRefGoogle Scholar
  26. Gilbert, F., & Ovadia, D. (2011). Deep brain stimulation in the media: Over-optimistic portrayals call for a new strategy involving journalists and scientists in ethical debates. Frontiers in Integrative Neuroscience, 5(A16), 1–6.Google Scholar
  27. Gutiérrez, J. C., Seijo, F. J., Alvarez Vega, M. A., et al. (2009). Therapeutic extradural cortical stimulation for Parkinson’s disease: Report of six cases and review of the literature. Clinical Neurology and Neurosurgery, 111(8), 703–707.CrossRefGoogle Scholar
  28. Hamilton, R., Messing, S., & Chatterjee, A. (2011). Rethinking the thinking cap: Ethics of neural enhancement using noninvasive brain stimulation. Neurology, 76(2), 187–193.CrossRefGoogle Scholar
  29. Hariz, M. I., Blomstedt, P., & Zrinzo, L. (2010). Deep brain stimulation between 1947 and 1987: The untold story. Neurosurgical Focus, 29(2), E1.CrossRefGoogle Scholar
  30. Jotterand, F., & Giordano, J. (2011). Transcranial magnetic stimulation, deep brain stimulation and personal identity: Ethical questions, and neuroethical approaches for medical practice. International Review of Psychiatry, 23(5), 476–485.CrossRefGoogle Scholar
  31. Joundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z., & Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology, 22(5), 403–407.CrossRefGoogle Scholar
  32. Judy, J. W. (2012). Neural interfaces for upper-limb prosthesis control: Opportunities to improve long-term reliability. IEEE Pulse, 3(2), 57–60.CrossRefGoogle Scholar
  33. Kekhia, H., Rigolo, L., Norton, I., & Golby, A. J. (2011). Special surgical considerations for functional brain mapping. Neurosurgery Clinics of North America, 22(2), 111–132.CrossRefGoogle Scholar
  34. Kirsch, B., & Bernstein, M. (2012). Ethical challenges with awake craniotomy for tumor. Canadian Journal of Neurological Sciences, 39(1), 78–82.Google Scholar
  35. Kissinger, J. A. (1998). Overconfidence: A concept analysis. Nursing Forum, 33(2), 18–26.CrossRefGoogle Scholar
  36. Kleiner-Fisman, G., Herzog, J., Fisman, D. N., et al. (2006). Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Movement Disorders, 21(Suppl 14), S290–S304.CrossRefGoogle Scholar
  37. Krack, P., Hariz, M. I., Baunez, C., Guridi, J., & Obeso, J. A. (2010). Deep brain stimulation: From neurology to psychiatry? Trends in Neurosciences, 33(10), 474–484.CrossRefGoogle Scholar
  38. Kramer, P. (2009). Incidental enhancement. In S. Schleidgen, M. Jungert, R. Bauer, & V. Sandow (Eds.), Human nature and self design (pp. 155–164). Paderborn: Mentis.Google Scholar
  39. Kringelbach, M. L., Green, A. L., Owen, S. L. F., Schweder, P. M., & Aziz, T. Z. (2010). Sing the mind electric – principles of deep brain stimulation. European Journal of Neuroscience, 32, 1070–1079.CrossRefGoogle Scholar
  40. Lad, S. P., Kalanithi, P. S., Patil, C. G., et al. (2010). Socioeconomic trends in deep brain stimulation (DBS) surgery. Neuromodulation, 13(3), 182–186.CrossRefGoogle Scholar
  41. Lee, K. H., Blaha, C. D., Garris, P. A., et al. (2009). Evolution of deep brain stimulation: Human electrometer and smart devices supporting the next generation of therapy. Neuromodulation: Technology at the Neural Interface, 12, 85–103.CrossRefGoogle Scholar
  42. Leefman, J., Krautter, J., Bauer, R., Tatagiba, M., & Gharabaghi, A. (2011). Die Authentizität modulierter Emotionen bei der Tiefen Hirnstimulation. In L. Kovács (Ed.), Darwin und die Bioethik Eve-Marie Engels zum 60. Geburtstag. Orig.-Ausg. Freiburg Br. München: Alber.Google Scholar
  43. Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science, 278(5335), 45–47.CrossRefGoogle Scholar
  44. Lloyd, A., Hayes, P., Bell, P. R., & Naylor, A. R. (2001). The role of risk and benefit perception in informed consent for surgery. Medical Decision Making, 21(2), 141–149.CrossRefGoogle Scholar
  45. Marino, R. (1979). Introduction: Functional neurosurgery as a specialty. In T. Rasmussen & R. Marino (Eds.), Functional neurosurgery (pp. 1–6). New York: Raven Press.Google Scholar
  46. Martin, J. H. (2012). Systems neurobiology of restorative neurology and future directions for repair of the damaged motor systems. Clinical Neurology and Neurosurgery, 114(5), 515–523.Google Scholar
  47. Martino, J., Honma, S. M., Findlay, A. M., et al. (2011). Resting functional connectivity in patients with brain tumors in eloquent areas. Annals of Neurology, 69(3), 521–532.CrossRefGoogle Scholar
  48. Martinovic, I., Davies, D., & Frank, M. u. a. (2012). On the feasibility of side-channel attacks with brain-computer interfaces. In 21st USENIX Security Symposium. USENIX Association.Google Scholar
  49. McNamee, M. J., & Edwards, S. D. (2006). Transhumanism, medical technology and slippery slopes. Journal of Medical Ethics, 32(9), 513–518.CrossRefGoogle Scholar
  50. Mendelsohn, D., Lipsman, N., & Bernstein, M. (2010). Neurosurgeons’ perspectives on psychosurgery and neuroenhancement: A qualitative study at one center. Journal of Neurosurgery, 113(6), 1212–1218.CrossRefGoogle Scholar
  51. Merkel, R. (2007). Intervening in the brain changing psyche and society. Berlin/New York: Springer.Google Scholar
  52. Min, H.-K., Hwang, S.-C., Marsh, M. P., et al. (2012). Deep brain stimulation induces BOLD activation in motor and non-motor networks: An fMRI comparison study of STN and EN/GPi DBS in large animals. NeuroImage, 63(3), 1408–1420.CrossRefGoogle Scholar
  53. Missios, S. (2007). Hippocrates, Galen, and the uses of trepanation in the ancient classical world. Neurosurgical Focus, 23(1), 1–9.CrossRefGoogle Scholar
  54. Modolo, J., Beuter, A., Thomas, A. W., & Legros, A. (2012). Using “smart stimulators” to treat Parkinson’s disease: Re-engineering neurostimulation devices. Frontiers in Computational Neuroscience, 6, 69.CrossRefGoogle Scholar
  55. Morgan, J. C., diDonato, c J., Iyer, S. S., et al. (2006). Self-stimulatory behavior associated with deep brain stimulation in Parkinson’s disease. Movement Disorders, 21(2), 283–285.CrossRefGoogle Scholar
  56. Murguialday, A. R., Hill, J., Bensch, M., et al. (2011). Transition from the locked in to the completely locked-in state: A physiological analysis. Clinical Neurophysiology, 122(5), 925–933.CrossRefGoogle Scholar
  57. Pagni, C. A., Albanese, A., Bentivoglio, A., et al. (2008). Results by motor cortex stimulation in treatment of focal dystonia, Parkinson’s disease and post-ictal spasticity. The experience of the Italian Study Group of the Italian Neurosurgical Society. Acta Neurochirurgica Supplement, 101, 13–21.CrossRefGoogle Scholar
  58. Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22(14), 1314–1318.CrossRefGoogle Scholar
  59. Priori, A., Foffani, G., Rossi, L., & Marceglia, S. (2012). Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Experimental Neurology, 245, 77–86.Google Scholar
  60. Ragert, P., Vandermeeren, Y., Camus, M., & Cohen, L. G. (2008). Improvement of spatial tactile acuity by transcranial direct current stimulation. Clinical Neurophysiology, 119(4), 805–811.CrossRefGoogle Scholar
  61. Raoul, S., Leduc, D., Deligny, C., & Lajat, Y. (2009). Therapeutic lesions through chronically implanted deep brain stimulation electrodes. In A. M. Lozano, P. L. Gildenberg, & R. R. Tasker (Eds.), Textbook of stereotactic and functional neurosurgery (pp. 1427–1442). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  62. Rosenfeld, J. V., Bandopadhayay, P., Goldschlager, T., & Brown, D. J. (2008). The ethics of the treatment of spinal cord injury: Stem cell transplants, motor neuroprosthetics, and social equity. Topics in Spinal Cord Injury Rehabilitation, 14(1), 76–88.CrossRefGoogle Scholar
  63. Sachdev, P. S., & Chen, X. (2009). Neurosurgical treatment of mood disorders: Traditional psychosurgery and the advent of deep brain stimulation. Current Opinion in Psychiatry, 22(1), 25–31. doi:10.1097/YCO.0b013e32831c8475.CrossRefGoogle Scholar
  64. Sakas, D. E., Panourias, I. G., Simpson, B. A., & Krames, E. S. (2007). An introduction to operative neuromodulation and functional neuroprosthetics, the new frontiers of clinical neuroscience and biotechnology. Acta Neurochirurgica Supplement, 97(Pt 1), 3–10.CrossRefGoogle Scholar
  65. Schermer, M. (2011). Ethical issues in deep brain stimulation. Frontiers in Integrative Neuroscience, 5(A17), 1–5.Google Scholar
  66. Schwartz, P. H. (2011). Questioning the quantitative imperative: Decision aids, prevention, and the ethics of disclosure. The Hastings Center Report, 41(2), 30–39.CrossRefGoogle Scholar
  67. Seifried, C., Weise, L., Hartmann, R., et al. (2012). Intraoperative microelectrode recording for the delineation of subthalamic nucleus topography in Parkinson’s disease. Brain Stimulation, 5(3), 378–387.CrossRefGoogle Scholar
  68. Shah, R. S., Chang, S.-Y., Min, H.-K., et al. (2010). Deep brain stimulation: Technology at the cutting edge. Journal of Clinical Neurology, 6(4), 167–182.CrossRefGoogle Scholar
  69. Shibasaki, H. (2012). Cortical activities associated with voluntary movements and involuntary movements. Clinical Neurophysiology, 123(2), 229–243.CrossRefGoogle Scholar
  70. Silvoni, S., Ramos-Murguialday, A., Cavinato, M., et al. (2011). Brain-computer interface in stroke: A review of progress. Clinical EEG and Neuroscience, 42(4), 245–252.CrossRefGoogle Scholar
  71. Sironi, V. A. (2011). Origin and evolution of deep brain stimulation. Frontiers in Integrative Neuroscience, 5(A42), 1–5.Google Scholar
  72. Skuban, T., Hardenacke, K., Woopen, C., & Kuhn, J. (2011). Informed consent in deep brain stimulation – ethical considerations in a stress field of pride and prejudice. Frontiers in Integrative Neuroscience, 5(A7), 1–2.Google Scholar
  73. Stadler, J. A., 3rd, Ellens, D. J., & Rosenow, J. M. (2011). Deep brain stimulation and motor cortical stimulation for neuropathic pain. Current Pain and Headache Reports, 15(1), 8–13.CrossRefGoogle Scholar
  74. Stephen, J. H., Halpern, C. H., Barrios, C. J., et al. (2012). Deep brain stimulation compared with methadone maintenance for the treatment of heroin dependence: A threshold and cost-effectiveness analysis. Addiction, 107(3), 624–634.CrossRefGoogle Scholar
  75. Stieglitz, T. (2007). Restoration of neurological functions by neuroprosthetic technologies: Future prospects and trends towards micro-, nano-, and biohybrid systems. Acta Neurochirurgica Supplement, 97(Pt 1), 435–442.Google Scholar
  76. Synofzik, M., & Schlaepfer, T. E. (2008). Stimulating personality: Ethical criteria for deep brain stimulation in psychiatric patients and for enhancement purposes. Biotechnology Journal, 3(12), 1511–1520.CrossRefGoogle Scholar
  77. Tsang, E. W., Hamani, C., Moro, E., et al. (2012). Subthalamic deep brain stimulation at individualized frequencies for Parkinson disease. Neurology, 78(24), 1930–1938.CrossRefGoogle Scholar
  78. Tye, S. J., Frye, M. A., & Lee, K. H. (2009). Disrupting disordered neurocircuitry: Treating refractory psychiatric illness with neuromodulation. Mayo Clinic Proceedings, 84(6), 522–532.CrossRefGoogle Scholar
  79. Umansky, F., Black, P. L., DiRocco, C., et al. (2011). Statement of ethics in neurosurgery of the world federation of neurosurgical societies. World Neurosurgery, 76(3–4), 239–247.CrossRefGoogle Scholar
  80. Valldeoriola, F., Puig-Junoy, J., & Puig-Peiró, R. (2013). Cost analysis of the treatments for patients with advanced Parkinson’s disease: SCOPE study. Journal of Medical Economics, 16(2), 191–201.CrossRefGoogle Scholar
  81. Vidailhet, M., Jutras, M. -F., Grabli, D., & Roze, E. (2012). Deep brain stimulation for dystonia. Journal of Neurology Neurosurgery Psychiatry, 1–14.Google Scholar
  82. Walter, H. (2001). Neurophilosophy of free will: From libertarian illusions to a concept of natural autonomy. Cambridge, MA: MIT Press.Google Scholar
  83. Wang, W., Collinger, J. L., Perez, M. A., et al. (2010). Neural interface technology for rehabilitation: Exploiting and promoting neuroplasticity. Physical Medicine and Rehabilitation Clinics of North America, 21(1), 157–178.CrossRefGoogle Scholar
  84. Wolpaw, J. R. (2007). Brain-computer interfaces as new brain output pathways. Journal of Physiology (London), 579(Pt 3), 613–619.CrossRefGoogle Scholar
  85. Wolpe, P. R., Foster, K. R., & Langleben, D. D. (2010). Emerging neurotechnologies for lie-detection: Promises and perils. The American Journal of Bioethics, 10(10), 40–48.CrossRefGoogle Scholar
  86. Zaehle, T., Sandmann, P., Thorne, J. D., Jäncke, L., & Herrmann, C. S. (2011). Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: Combined behavioural and electrophysiological evidence. BMC Neuroscience, 12, 2.CrossRefGoogle Scholar
  87. Zuo, C., Yang, X., Wang, Y., et al. (2012). A digital wireless system for closed-loop inhibition of nociceptive signals. Journal of Neural Engineering, 9(5), 056010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Translational and Functional & Restorative Neurosurgery, Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany
  2. 2.International Centre for Ethics in the Sciences and HumanitiesUniversity of TübingenTübingenGermany

Personalised recommendations