Advertisement

Mind Reading, Lie Detection, and Privacy

  • Adina L. RoskiesEmail author
Reference work entry

Abstract

Neuroimaging techniques can generate a variety of kinds of personal information. This chapter focuses on the potential for neuroimaging to threaten privacy by revealing mental content and discusses the scientific and ethical issues that should be considered in a neuroethical analysis of neuroimaging that may infringe on privacy. Here these considerations are illustrated with a discussion of the scientific and ethical issues that arise when trying to use neuroimaging technologies for lie detection in real-world applications. Although current methods do not significantly threaten mental privacy, it is possible that privacy rights could be infringed with further developments in neuroimaging. However, this area is highly undertheorized; more work on the foundations of the right to privacy is needed.

Keywords

Ecological Validity Mental Content Ethical Analysis Target Study Critical Race Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aharoni, E., Vincent, G. M., Harenski, C. L., Calhoun, V. D., Sinnott-Armstrong, W., et al. (2013). Neuroprediction of future rearrest. Proceedings of the National Academy of Sciences of the United States of America, 110, 6223–6228.CrossRefGoogle Scholar
  2. Azevedo, R. T., Macaluso, E., Avenanti, A., Santangelo, V., Cazzato, V., & Aglioti, S. M. (2012). Their pain is not our pain: Brain and autonomic correlates of empathic resonance with the pain of same and different race individuals. Human Brain Mapping, 34, 3168–3181.CrossRefGoogle Scholar
  3. Bizzi, E., Hyman, S. E., Raichle, M. E., Kanwisher, N., & Phelps, E. A. (2009). Using imaging to identify deceit: Scientific and ethical questions. Cambridge, MA: American Academy of Arts and Sciences.Google Scholar
  4. Blackford, J. U., Avery, S. N., Cowan, R. L., Shelton, R. C., & Zald, D. H. (2011). Sustained amygdala response to both novel and newly familiar faces characterizes inhibited temperament. Social Cognitive and Affective Neuroscience, 6, 621–629.CrossRefGoogle Scholar
  5. Brower, M. C., & Price, B. H. (2001). Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: A critical review. Journal of Neurology, Neurosurgery and Psychiatry, 71, 720–726.CrossRefGoogle Scholar
  6. Bruneau, E. G., & Saxe, R. (2010). Attitudes towards the outgroup are predicted by activity in the precuneus in Arabs and Israelis. NeuroImage, 52, 1704–1711.CrossRefGoogle Scholar
  7. Carre, A., Gierski, F., Lemogne, C., Tran, E., Raucher-Chene, D., et al. (2013). Linear association between social anxiety symptoms and neural activations to angry faces: From subclinical to clinical levels. Social Cognitive Affective Neuroscience. doi: 10.1093/scan/nst061.Google Scholar
  8. Chang, K.-M. K., Mitchell, T., & Just, M. A. (2011). Quantitative modeling of the neural representation of objects: How semantic feature norms can account for fMRI activation. NeuroImage, 56, 716–727.CrossRefGoogle Scholar
  9. Christ, S. E., Van Essen, D. C., Watson, J. M., Brubaker, L. E., & McDermott, K. B. (2009). The contributions of prefrontal cortex and executive control to deception: Evidence from activation likelihood estimate meta-analyses. Cerebral Cortex, 19, 1557–1566.CrossRefGoogle Scholar
  10. Clark, V.P., Beatty, G.K., Anderson. R.E., Kodituwakku. P., Phillips. J.P., et al. (2014). Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence. Human Brain Mapping, 35, 414–428.Google Scholar
  11. Davatzikos, C., Ruparel, K., Fan, Y., Shen, D. G., Acharyya, M., et al. (2005). Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection. NeuroImage, 28, 663–668.CrossRefGoogle Scholar
  12. de Oliveira-Souza, R., Hare, R. D., Bramati, I. E., Garrido, G. J., Azevedo Ignacio, F., et al. (2008). Psychopathy as a disorder of the moral brain: Fronto-temporo-limbic grey matter reductions demonstrated by voxel-based morphometry. NeuroImage, 40, 1202–1213.CrossRefGoogle Scholar
  13. Du, W., Calhoun, V. D., Li, H., Ma, S., Eichele, T., et al. (2012). High classification accuracy for schizophrenia with rest and task FMRI data. Frontiers in Human Neuroscience, 6, 145.CrossRefGoogle Scholar
  14. Farah, M.J., Hutchinson, B., Phelps, E.A., Wagner, A.D. (2014). fMRI lie detection: Scientific and societal challenges. Nat Review Neurosciences, 15, 123–131.Google Scholar
  15. Farahany, N. (2012). Incriminating thoughts. Stanford Law Review, 64, 351–408.Google Scholar
  16. Fox, D. (2008). Brain imaging and the bill of rights. The American Journal of Bioethics, 8, 34–36.CrossRefGoogle Scholar
  17. Ganis, G., Kosslyn, S. M., Stose, S., Thompson, W. L., & Yurgelun-Todd, D. A. (2003). Neural correlates of different types of deception: An fMRI investigation. Cerebral Cortex, 13, 830–836.CrossRefGoogle Scholar
  18. Greene, J., & Paxton, J. (2009). Patterns of neural activity associated with honest and dishonest moral decisions. PNAS, 106, 12506–12511.CrossRefGoogle Scholar
  19. Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21, 424–430.CrossRefGoogle Scholar
  20. Gymrek, M., McGuire, A. L., Golan, D., Halperin, E., & Erlich, Y. (2013). Identifying personal genomes by surname inference. Science, 339, 321–324.CrossRefGoogle Scholar
  21. Hakun, J. G., Seelig, D., Ruparel, K., Loughead, J. W., Busch, E., et al. (2008). FMRI investigation of the cognitive structure of the concealed information test. Neurocase, 14, 59–67.CrossRefGoogle Scholar
  22. Hakun, J. G., Ruparel, K., Seelig, D., Busch, E., Loughead, J. W., et al. (2009). Towards clinical trials of lie detection with fMRI. Social Neuroscience, 4, 518–527.CrossRefGoogle Scholar
  23. Haynes, J.-D. (2009). Decoding visual consciousness from human brain signals. Trends in Cognitive Sciences, 13, 194–202.CrossRefGoogle Scholar
  24. Holley, B. (2009). It’s all in your head: Neurotechnological lie detection and the fourth and fifth amendments. Developments in Mental Health Law, 28, 1–23.Google Scholar
  25. Hurd, A. J. (2012). Eaching past fingertips with forensic neuroimaging—non-“Testimonial” evidence exceeding the Fifth Amendment’s Grasp. Loyola Law Review, 58, 213–248.Google Scholar
  26. Illes, J., Kirschen, M. P., Edwards, E., Stanford, L. R., Bandettini, P., et al. (2006). Ethics. Incidental findings in brain imaging research. Science, 311, 783–784.CrossRefGoogle Scholar
  27. Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452, 352–355.CrossRefGoogle Scholar
  28. Knutson, K. M., Mah, L., Manly, C. F., & Grafman, J. (2007). Neural correlates of automatic beliefs about gender and race. Human Brain Mapping, 28, 915–930.CrossRefGoogle Scholar
  29. Kozel, F. A., Johnson, K. A., Mu, Q., Grenesko, E. L., Laken, S. J., & George, M. S. (2005). Detecting deception using functional magnetic resonance imaging. Biological Psychiatry, 58, 605–613.CrossRefGoogle Scholar
  30. Krill, A., & Platek, S. M. (2009). In-group and out-group membership mediates anterior cingulate activation to social exclusion. Frontiers in Evolutionary Neuroscience, 1, 1.CrossRefGoogle Scholar
  31. Langleben, D. D., & Moriarty, J. C. (2013). Using brain imaging for lie detection: Where science, law and research policy collide. Psychology, Public Policy, and Law: An Official Law Review of the University of Arizona College of Law and the University of Miami School of Law, 19, 222–234.CrossRefGoogle Scholar
  32. Langleben, D. D., Loughead, J. W., Bilker, W. B., Ruparel, K., Childress, A. R., et al. (2005). Telling truth from lie in individual subjects with fast event-related fMRI. Human Brain Mapping, 26, 262–272.CrossRefGoogle Scholar
  33. Laricchiuta, D., Petrosini, L., Piras, F., Cutuli, D., Macci, E., et al. (2013). Linking novelty seeking and harm avoidance personality traits to basal ganglia: Volumetry and mean diffusivity. Brain Structure & Function. doi: 10.1007/ s00429-013-0535-5.Google Scholar
  34. Lemogne, C., Gorwood, P., Bergouignan, L., Pelissolo, A., Lehericy, S., & Fossati, P. (2011). Negative affectivity, self-referential processing and the cortical midline structures. Social Cognitive and Affective Neuroscience, 6, 426–433.CrossRefGoogle Scholar
  35. McCabe, D. P., Castel, A. D., & Rhodes, M. G. (2011). The influence of fMRI lie detection evidence on juror decision-making. Behavioral Sciences & the Law, 29, 566–577.CrossRefGoogle Scholar
  36. Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K.-M., Malave, V. L., et al. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320, 1191–1195.CrossRefGoogle Scholar
  37. Monteleone, G. T., Phan, K. L., Nusbaum, H. C., Fitzgerald, D., Irick, J.-S., et al. (2009). Detection of deception using fMRI: Better than chance, but well below perfection. Social Neuroscience, 4, 528–538.CrossRefGoogle Scholar
  38. Nadelhoffer, T., Bibas, S., Grafton, S., Kiehl, K., Mansfield, A., et al. (2010). Neuroprediction, violence, and the law: Setting the stage. Neuroethics, 1–33.Google Scholar
  39. Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L. (2009). Bayesian reconstruction of natural images from human brain activity. Neuron, 63, 902–915.CrossRefGoogle Scholar
  40. Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology, 21, 1641–1646.CrossRefGoogle Scholar
  41. Rametti, G., Carrillo, B., Gomez-Gil, E., Junque, C., Zubiarre-Elorza, L., et al. (2011). The microstructure of white matter in male to female transsexuals before cross-sex hormonal treatment. A DTI study. Journal of Psychiatric Research, 45, 949–954.Google Scholar
  42. Rosenfeld, J. P., Labkovsky, E., Winograd, M., Lui, M. A., Vandenboom, C., & Chedid, E. (2008). The Complex Trial Protocol (CTP): A new, countermeasure-resistant, accurate, P300-based method for detection of concealed information. Psychophysiology, 45, 906–919.CrossRefGoogle Scholar
  43. Roskies, A. L. (forthcoming). Mindreading and privacy. In M. Gazzaniga (Ed.), The cogntive neurosciences V.Google Scholar
  44. Schauer, F. (2010). Neuroscience, lie-detection, and the law. Trends in Cognitive Sciences, 14, 101–103.CrossRefGoogle Scholar
  45. Scott, N. A., Murphy, T. H., & Illes, J. (2012). Incidental findings in neuroimaging research: A framework for anticipating the next frontier. Journal of Empirical Research on Human Research Ethics: JERHRE, 7, 53–57.CrossRefGoogle Scholar
  46. Shinkareva, S. V., Malave, V. L., Mason, R. A., Mitchell, T. M., & Just, M. A. (2011). Commonality of neural representations of words and pictures. NeuroImage, 54, 2418–2425.CrossRefGoogle Scholar
  47. Soon, C. S., Brass, M., Heinze, H.-J., & Haynes, J.-D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11, 543–545.CrossRefGoogle Scholar
  48. Spence, S. A. (2008). Playing Devil’s advocate: The case against fMRI lie detection. Legal and Criminological Psychology, 13, 11–25.CrossRefGoogle Scholar
  49. Stoller, S. E., & Wolpe, P. R. (2007). Emerging neurotechnologies for Lie detection and the fifth amendment. American Journal of Law & Medicine, 33, 359–375.Google Scholar
  50. Teipel, S. J., Grothe, M., Lista, S., Toschi, N., Garaci, F. G., & Hampel, H. (2013). Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. The Medical Clinics of North America, 97, 399–424.CrossRefGoogle Scholar
  51. US v Semrau. (2010). 643 F. 3d 510, decided Sept. 7, 2012Google Scholar
  52. Van Bavel, J. J., Packer, D. J., & Cunningham, W. A. (2008). The neural substrates of in-group bias: A functional magnetic resonance imaging investigation. Psychological Science, 19, 1131–1139.CrossRefGoogle Scholar
  53. Van Schuerbeek, P., Baeken, C., De Raedt, R., De Mey, J., & Luypaert, R. (2011). Individual differences in local gray and white matter volumes reflect differences in temperament and character: A voxel-based morphometry study in healthy young females. Brain Research, 1371, 32–42.CrossRefGoogle Scholar
  54. Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fmri studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4, 274–290.CrossRefGoogle Scholar
  55. Wagner AD. (2010). Can neuroscience identify lies? In Gazzaniga, Michael S., (Eds.), A judges guide to neuroscience: A concise introduction (pp. 13–25). SAGE Center, UC Santa, Barbara.Google Scholar
  56. Warren, S., & Brandeis, L. (1890). The right to privacy. Harvard Law Review, 4, 193.CrossRefGoogle Scholar
  57. Wilson v Corestaff (2010) 28 Misc. 3d 425. (May 14, 2010)Google Scholar
  58. Wolpe, P. R., Foster, K. R., & Langleben, D. D. (2005). Emerging neurotechnologies for lie-detection: Promises and perils. The American Journal of Bioethics, 5, 39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhilosophyDartmouth CollegeHanoverUSA

Personalised recommendations