Advertisement

Amazon River Basin

  • Florian Wittmann
  • Wolfgang J. Junk
Reference work entry

Abstract

Amazonian wetlands cover an area of more than two million km2 and consist of different wetland types that vary in hydrology, water and soil fertility, and productivity. Wetlands harbor a large fraction of Amazonian biodiversity also including many endemic plant and animal species, and provide multiple ecosystem services to humans. However, few Amazonian countries have detailed wetland inventories, maps, and classification systems, and therefore also lack specific conservation and wetland management strategies. While remote and scarcely inhabited wetland types are still in a fairly pristine stage, the conservation status of most Amazonian wetlands is at high risk because of multiple threats and in particular due to the lack of national and transnational policies regarding wetland conservation. Major threats of Amazonian wetlands include land cover change, river damming for hydropower generation, pollution, ecosystem degradation and local changes in hydrology. This trend can only be mitigated by the creation of a more holistic understanding of the benefits provided by wetlands combined with integrated, transnational conservation measures.

Keywords

Biodiversity Ecosystem Degradation Endemism Hydropower Generation Large-river floodplains 

References

  1. Abell R, Allan JD, Lehner B. Unlocking the potential of protected areas for freshwaters. Biol Conserv. 2007;134:48–63.CrossRefGoogle Scholar
  2. Abell R, Thieme ML, Revenga C, et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience. 2008;58:403–14.CrossRefGoogle Scholar
  3. Adis J. Terrestrial invertebrates: survival strategies, group spectrum, dominance and activity patterns. In: Junk WJ, editor. The Central Amazonian floodplain: ecology of a pulsing system. Berlin: Springer; 1997. p. 299–318.CrossRefGoogle Scholar
  4. Adis J, Junk WJ. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshw Biol. 2002;47:711–31.CrossRefGoogle Scholar
  5. Adis J, Messner B. Adaptations to life under water: tiger beetles and millipedes. In: Junk WJ, editor. The Central Amazon floodplain: ecology of pulsing system. Berlin: Springer; 1997. p. 319–30.CrossRefGoogle Scholar
  6. Agostinho AA, Pelicice FM, Gomes LC. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol. 2008;68:1119–32.CrossRefPubMedGoogle Scholar
  7. Bayley PB. Central Amazon fish populations: biomass, production and some dynamic characteristics. [dissertation]. Halifax: Dalhousie University; 1983.Google Scholar
  8. Bayley PB, Petrere Jr M. Amazon fisheries: assessment methods, current status, and management options. Can Spec Publ Fish Aquat Sci. 1989;106:385–98.Google Scholar
  9. Bleich ME, Mortati AF, André T, Piedade MTF. Riparian deforestation affects the structural dynamics of headwater streams from southern Brazilian Amazonia. Trop Conserv Sci. 2014;7:657–76.CrossRefGoogle Scholar
  10. Brightsmith D, Bravo A. Ecology and management of nesting blue-and-yellow macaws (Ara ararauna) in Mauritia palm swamps. Biodivers Conserv. 2005;15:4271–87.CrossRefGoogle Scholar
  11. Castello L, McGrath DG, Hess LL, et al. The vulnerability of Amazonian freshwater ecosystems. Conserv Lett. 2013;6:217–29.CrossRefGoogle Scholar
  12. Coomes DA. Nutrient status of Amazonian caatinga forests in a seasonally dry area: nutrient fluxes in litter fall and analyses of soils. Can J For Res. 1997;27:831–9.Google Scholar
  13. da Silva JMC, Rylands AB, da Fonseca GAB. The fate of the Amazonian areas of endemism. Conserv Biol. 2005;19:689–94.CrossRefGoogle Scholar
  14. De Groot R, Brander L, Van der Ploeg S, et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv. 2012;1:50–61.CrossRefGoogle Scholar
  15. De Sousa Jr PT, Piedade MTF, Candotti E. Brazil’s forest code puts wetlands at risk. Lett Nat. 2011;478:458.CrossRefGoogle Scholar
  16. Dias AP. Análise especial aplicada a delimitação de áreas úmidas da planície de inundação do médio Araguaia. [master’s thesis]. Cuiabá: Faculdade de Engenharia Florestal, Universidade Federal de Mato Grosso; 2014. Portuguese.Google Scholar
  17. Fearnside PM. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River basin. Environ Manag. 2006;38:16–27.CrossRefGoogle Scholar
  18. Fearnside PM. Emissions from tropical hydropower and the IPCC. Environ Sci Pol. 2015;50:225–39.CrossRefGoogle Scholar
  19. Ferreira J, Aragão LEOC, Barlow J, et al. Brazil’s environmental leadership at risk: mining and dams threaten protected areas. Science. 2014;346:706–7.CrossRefPubMedGoogle Scholar
  20. Fine PVA, Mesones I, Coley PD. Herbivores promote habitat specialization by trees in Amazonian forests. Science. 2004;305:663–5.CrossRefPubMedGoogle Scholar
  21. Finer M, Jenkins CN. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS One. 2012;7, e35126.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Franco W, Dezzeo N. Soils and soil-water regime in the terra firme-caatinga forest complex near San Carlos de Rio Negro, state of Amazonas, Venezuela. Interciencia. 1994;19:305–16.Google Scholar
  23. Franklin E, Adis J, Woas S. The oribatid mites. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Berlin: Springer; 1997. p. 331–49.CrossRefGoogle Scholar
  24. Galeano A, Urrego LE, Sánchez M, Peñuela MC. Environmental drivers for regeneration of Mauritia flexuosa L.f. in Colombian Amazonian swamp forest. Aquat Bot. 2015;123:47–53.CrossRefGoogle Scholar
  25. Gopal B, Junk WJ, Davis JA, editors. Biodiversity in wetlands: assessment, function and conservation. Leiden: Backhuys; 2000.Google Scholar
  26. Goulding M, Carvalho ML, Ferreira MG. Rio Negro: rich life in poor water. Hague: SPB Academic Publ. bv; 1988.Google Scholar
  27. Guevara JE, Damasco G, Baraloto C. Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica. 2016;48:34–46.CrossRefGoogle Scholar
  28. Hansen MC, Potapov PV, Moore R, et al. High-resolution global maps of 21st century forest cover change. Science. 2013;342:850–3.CrossRefPubMedGoogle Scholar
  29. Haugaasen T, Peres CA. Primate assemblage structure in Amazonian flooded and unflooded forest. Am J Primatol. 2005;67:243–58.CrossRefPubMedGoogle Scholar
  30. Higuchi N, Hummel AC, Freitas JV, Malinowski JR, Stokes BJ. Exploração florestal nas várzeas do Estado do Amazonas: Seleção de árvores, derrubada e transporte, Proceedings of the VIII Harvesting and Transportation of Timber Products Workshop. Curitiba: IUFRO/UFPr; 1994. p. 168–93. Portuguese.Google Scholar
  31. Hödl W. Call differences and calling site segregation in anuran species from Central Amazonian floating meadows. Oecologia. 1977;28:351–63.CrossRefPubMedGoogle Scholar
  32. Horbe AMC, Horbe MA, Suguio K. Tropical spodosols in northeastern Amazonas State Brazil. Geoderma. 2004;119:55–68.CrossRefGoogle Scholar
  33. Householder JE, Janovec JP, Tobler MW, Page S, Lähteenoja O. Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands. 2012;32:359–68.CrossRefGoogle Scholar
  34. Householder JE, Wittmann F, Tobler MW, Janovec JP. Montane bias in lowland Amazonian peatlands: plant assembly on heterogeneous landscapes and potential significance to palynological inference. Palaeogeogr Palaeoclimatol Palaeoecol. 2015;423:138–48.CrossRefGoogle Scholar
  35. Huber O, Gharbarran G, Funk V. Vegetation map of Guyana. Georgetown: Centre for the Study of Diversity, University of Guyana; 1995.Google Scholar
  36. IBGE. Indicadores de Desenvolvimento Sustentável, Estudos e Pesquisas Informação geográfica, vol. 9. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2012.Google Scholar
  37. IBGE. Economia do turismo – uma perspectiva macroeconômica 2003–2009. 2015. http://www.ibge.gov.br/home/estatistica/economia/industria/economia_tur_20032009. Accessed 24 Jan 2016.
  38. INPE. Satellite monitoring of Brazil’s Amazon forest (PRODES). São José dos Campos: Brazilian National Agency for Space Research; 2014. http://www.obt.inpe.br/prodes/.
  39. Irion G, Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L. Development of the Amazon valley during the middle to late quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forest: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 27–42.CrossRefGoogle Scholar
  40. Irmler U. Überlebensstrategien von Tieren im saisonal überfluteten amazonischen Überschwemmungswald. Zool Anz Jena. 1981;206:26–38.Google Scholar
  41. Junk WJ. Wetlands of tropical South America. In: Wigham D, Hejny S, Dykyjowa D, editors. Wetlands of the world. Dordrecht: Junk Publications; 1993. p. 679–739.Google Scholar
  42. Junk WJ. Freshwater fishes of South America: their biodiversity, fisheries, and habitats – a synthesis. Aquat Ecosyst Health Manag. 2007;10:228–42.CrossRefGoogle Scholar
  43. Junk WJ. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat Sci. 2013;75:113–31.CrossRefGoogle Scholar
  44. Junk WJ, da Silva VMF. Mammals, reptiles and amphibians. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Ecological studies. Berlin: Springer; 1997. p. 409–17.CrossRefGoogle Scholar
  45. Junk WJ, Piedade MTF. Herbaceous plants in the floodplain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana. 1993;12:467–84.Google Scholar
  46. Junk WJ, Robertson B. Aquatic invertebrates. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Ecological studies. Berlin: Springer; 1997. p. 279–98.CrossRefGoogle Scholar
  47. Junk WJ, Bayley PB, Sparks RE. The flood pulse concept in river-floodplain systems. Proceedings of the International Large River Symposium, Ottawa. Can Spec Publ Fish Aquat Sci. 1989;106:110–27.Google Scholar
  48. Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann F. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands. 2011;31:623–40.CrossRefGoogle Scholar
  49. Junk WJ, Piedade MTF, Schöngart J, Wittmann F. A classification of major natural habitats of Amazonian white-water river floodplains (várzea). Wetlands Ecol Manag. 2012;20:461–75.CrossRefGoogle Scholar
  50. Junk WJ, Wittmann F, Schöngart J, Piedade MTF. A classification of the major habitats of Amazonian black-water river floodplains and a comparison with their white-water counterparts. Wetlands Ecol Manag. 2015;23:677–93.CrossRefGoogle Scholar
  51. Kahn F. Los nombres mas comunes de palmeras de la Amazonia. Biota. 1991;15:17–32.Google Scholar
  52. Kemenes A, Forsberg BR, Melack JM. CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). J Geophys Res: Biogeosci. 2011;116, G03004.CrossRefGoogle Scholar
  53. Kern J, Kreibich H, Koschorreck M, Darwich A. Nitrogen balance of a floodplain forest of the Amazon River: the role of nitrogen fixation. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 281–99.CrossRefGoogle Scholar
  54. Klinge H, Medina E. Rio Negro caatingas and campinas, Amazonas States of Venezuela and Brazil. In: Specht RL, editor. Heatlands and related shrublands. Ecosystems of the world, vol. 9a. Amsterdam: Elsevier; 1979. p. 483–8.Google Scholar
  55. Kubitzki K. The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol. 1989;63:285–304.CrossRefGoogle Scholar
  56. Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M. Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol. 2009;15:2311–20.CrossRefGoogle Scholar
  57. Latrubesse EM. Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology. 2008;101:130–45.CrossRefGoogle Scholar
  58. Lees AC, Peres CA. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv Biol. 2008;22:439–49.CrossRefPubMedGoogle Scholar
  59. Lehner B, Liermann CR, Revenga C, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ. 2011;9:494–502.CrossRefGoogle Scholar
  60. Luizão FJ, Luizão RCC, Proctor J. Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecol. 2007;192:209–24.CrossRefGoogle Scholar
  61. Macedo MN, Coe MT, Defries R, Uriarte M, Brando PM, Neill C, Walker WS. Land-use-driven stream warming in southeastern Amazonia. Phil Trans R Soc B: Biol Sci. 2013;368:20120153.CrossRefGoogle Scholar
  62. McGrath DG, Cardoso A, Almeida OT, Pezzuti J. Constructing a policy and institutional framework for an ecosystem-based approach to managing the lower Amazon floodplain. Environ Dev Sustain. 2008;10:677–95.CrossRefGoogle Scholar
  63. Melack JM, Fisher TR. Comparative limnology of tropical floodplain lakes with an emphasis on the Central Amazon. Acta Limnologica Brasiliensia. 1990;3:1–48.Google Scholar
  64. Melack JM, Hess LL. Remote sensing of the distribution and extent of wetlands in the Amazon basin. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forest: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 27–42.Google Scholar
  65. MME. Plano decenal de expansão de energia 2023. Brasília: Ministério de Minas e Energia; MME/EPE Empresa de Pesquisa Energética; 2014.Google Scholar
  66. Mori S. A Família da Castanha-do-Pará: Símbolo do Rio Negro. In: Oliveira AA, Daly DC, editors. Florestas do Rio Negro. São Paulo: UNIP, NYBG e Companhia das Letras; 2001. p. 119–42.Google Scholar
  67. Navarro G, Maldonado M. Geografía ecológica de Bolivia: Vegetación y Ambientes acuáticos. Santa Cruz de la Sierra: Centro de Ecología Aplicada Simón I. Patiño, Departamento de Difusión; 2002.Google Scholar
  68. Nepstad D, McGrath D, Stickler C, et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science. 2014;344:1118–23.CrossRefGoogle Scholar
  69. Nilsson C, Berggren K. Alterations of riparian ecosystems caused by river regulation. BioScience. 2000;50:783–92.CrossRefGoogle Scholar
  70. Nilsson C, Reidy CA, Dynesius M, Revenga C. Fragmentation and flow regulation of the world’s large river systems. Science. 2005;308:405–8.CrossRefPubMedGoogle Scholar
  71. Pelicice FM, Pompeu PS, Agostinho AA. Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish. 2014;16:697–715.CrossRefGoogle Scholar
  72. Peres CA, Terborgh JW. Amazonian nature reserves – an analysis of the defensibility status of existing conservation units and design criteria for the future. Conserv Biol. 1995;9:34–46.CrossRefGoogle Scholar
  73. Petermann P. The birds. In: Junk WJ, editor. The Central Amazon floodplain: ecology of a pulsing system. Berlin: Springer; 1997. p. 419–52.CrossRefGoogle Scholar
  74. Petermann P. The birds of the Pantanal. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM, editors. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft; 2011. p. 523–64.Google Scholar
  75. Piedade MTF, Junk WJ, Long SP. The productivity of the C4 grass Echinochloa polystachia on the Amazon floodplain. Ecology. 1991;72:1456–63.CrossRefGoogle Scholar
  76. Pitman NCA, Andino JEG, Aulestia M, et al. Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography. 2014;37:902–15.CrossRefGoogle Scholar
  77. Pouilly M, Beck SG, Ibenes C. Biodiversidad biológica en la Llanura de inundación del Rio Marmoré. Importancia ecológica de la dinamica fluvial. Santa Cruz de la Sierra: Centro de Ecologia Aplicada Simón I. Patiño; 2004.Google Scholar
  78. Prance GT. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia. 1979;3:26–38.CrossRefGoogle Scholar
  79. Queiroz JAL, Mochiutti S, Machado SA, Galvão F. Composição florística e estrutura de floresta em várzea alta estuarina Amazônica. Floresta. 2005;35:41–56.CrossRefGoogle Scholar
  80. Rede Globo. Pescadores matam boto rosa para usar de isca na pesca de peixe. 2014. http://g1.globo.com/fantastico/noticia/2014/07/pescadores-matam-boto-rosa-para-usar-de-isca-na-pesca-de-peixe.html. Accessed 27 Jan 2016.
  81. Renó VF, Novo EMLM, Suemitsu C, Renó CD, Silva TSF. Assessment of deforestation in the lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens Environ. 2011;115:3446–56.CrossRefGoogle Scholar
  82. Rosenberg DM, Bodaly RA, Usher PJ. Environmental and social impacts of large-scale hydroelectric development: who is listening? Glob Environ Chang. 1995;5:127–48.CrossRefGoogle Scholar
  83. Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD. River dynamics and the diversity of the Amazon lowland forest. Nature. 1986;322:254–8.CrossRefGoogle Scholar
  84. Schöngart J, Wittmann F, Worbes M. Biomass and NPP of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 347–88.CrossRefGoogle Scholar
  85. Sioli H. Beiträge zur regionalen Limnologie des Amazonasgebietes. Arch Hydrobiol. 1954;45:267–83.Google Scholar
  86. Soares MGM, Junk WJ. Commercial fishery and fish culture of the state of Amazonas: status and perspectives. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM, editors. The Central Amazon floodplain: actual use and options for a sustainable management. Leiden: Backhuys Publ; 2000. p. 433–61.Google Scholar
  87. Soares-Filho B, Moutinho P, Nepstad D, et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc Natl Acad Sci. 2010;107:10821–6.CrossRefPubMedGoogle Scholar
  88. Strüssmann C, Prado CPA, Ferreira VL, Ribeiro RAK. Diversity, ecology, management and conservation of amphibians and reptiles of the Brazilian Pantanal: a review. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM, editors. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft; 2011. p. 497–521.Google Scholar
  89. Takeuchi M. A estrutura da vegetação na Amazônia: III – A mata de campina na região do rio Negro. Bol Mus Paraense Emilio Goeldi. 1960;8:1–13.Google Scholar
  90. Targhetta N, Kesselmeier J, Wittmann F. Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobotanica. 2015;50:185–205.CrossRefGoogle Scholar
  91. Ter Steege H, Pitman N, Sabatier D, et al. A spatial model of tree α-diversity and -density for the Amazon region. Biodivers Conserv. 2003;12:2255–77.CrossRefGoogle Scholar
  92. Ter Steege H, Pitman NCA, Sabatier D, et al. Hyper-dominance in the Amazonian tree flora. Science. 2013;342:325–34.Google Scholar
  93. Tobler M, Janovec JP, Cornejo F. Frugivory and seed dispersal by the lowland Tapir (Tapirus terrestris) in the Peruvian Amazon. Biotropica. 2009;42:215–22.CrossRefGoogle Scholar
  94. Tomas WM, Cáceres NC, Nunes AP, Fischer E, Mourão G, Campos Z. Mammals in the Pantanal wetland, Brazil. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM, editors. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia: Pensoft; 2011. p. 565–97.Google Scholar
  95. Wittmann F, Oliveira Wittmann A. Use of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 389–418.CrossRefGoogle Scholar
  96. Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M. Tree species composition and diversity gradients in white-water forests across the Amazon basin. J Biogeogr. 2006;33:1334–47.CrossRefGoogle Scholar
  97. Wittmann F, Schöngart J, Junk WJ. Phytogeography, species diversity, community structure and dynamics of Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P, editors. Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Berlin: Springer; 2010. p. 61–104.CrossRefGoogle Scholar
  98. Wittmann F, Householder E, Piedade MTF, Assis RL, Schöngart J, Parolin P, Junk WJ. Habitat specifity, endemism and the neotropical distribution of Amazonian white-water floodplain trees. Ecography. 2013;36:690–707.CrossRefGoogle Scholar
  99. Wittmann F, Householder E, Oliveira Wittmann A, Lopes A, Junk WJ, Piedade MTF. Implementation of the Ramsar convention on South American wetlands: an update. Res Rep Biodivers Stud. 2015;4:47–58.Google Scholar
  100. Yin L, Fu R, Zhang Y-F, et al. What controls the interannual variation of the wet season onsets over the Amazon? J Geophys Res: Atmos. 2014;119:2314–28.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Floodplain EcologyKarlsruhe Institute of Technology - KITRastattGermany
  2. 2.Instituto Nacional de Ciência e Tecnologia em Áreas Úmidas (INCT-INAU)Universidade Federal de Mato Grosso (UFMT)CuiabáBrazil

Personalised recommendations