Advertisement

The Wetland Book pp 1589-1596 | Cite as

Current Status of Seagrass Habitat in Korea

  • Kun-Seop Lee
  • Seung Hyeon Kim
  • Young Kyun Kim
Reference work entry

Abstract

Nine seagrass species of four genera, including five Zostera species (Z. marina, Z. asiatica, Z. caespitosa, Z. caulescens, and Z. japonica), two Phyllospadix species (P. iwatensis and P. jaonicus), Ruppia maritima, and Halophila nipponica are distributed on soft sediments and rocky substrata from intertidal to approximately 15 m water depth in coastal waters of Korea. Zostera marina is the dominant seagrass species, and H. nipponica, a species of the tropical genus, has been observed recently on the coasts of Korea. Zostera asiatica, Z. caespitosa, Z. caulescens, and two Phyllospadix species are endemic in the northwestern Pacific. Most seagrasses in Korea have growth dynamics adapted to temperate environments, but H. nipponica exhibits a growth pattern similar to tropical/subtropical seagrass species. Six seagrass species including Z. marina, Z. caespitosa, Z. caulescens, Z. asiatica, P. iwatensis, and P. japonicus are protected as “Marine Organisms under Protection” in Korea. Seven of the 15 IUCN Red List seagrass species occur in coastal waters of Korea. Significant loss of seagrass habitats has been reported due to both anthropogenic and natural disturbances such as land reclamation and coastal eutrophication in Korea. Since the majority of Korean seagrasses are cold water adapted, global climate change appears to be a new threat to seagrasses in Korea.

Keywords

Anthropogenic disturbances Growth dynamics Korea Seagrasses Seagrass decline Threatened seagrasses 

References

  1. Kim JB, Park J-I, Jung C-S, Lee P-Y, Lee K-S. Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean peninsula. Aquat Bot. 2009;90(3):269–72.CrossRefGoogle Scholar
  2. Kim SH, Kim YK, Park SR, Li W-T, Lee K-S. Growth dynamics of the seagrass Halophila nipponica, recently discovered in temperate coastal waters of the Korean peninsula. Mar Biol. 2012;159:255–67.CrossRefGoogle Scholar
  3. Kim SH, Kim J-H, Park SR, Lee K-S. Annual and perennial life history strategies of Zostera marina populations under different light regimes. Mar Ecol Prog Ser. 2014;509:1–13.CrossRefGoogle Scholar
  4. Kim K, Choi J-K, Ryu J-H, Jeong HJ, Lee K, Park MG, Kim KY. Observation of typhoon-induced seagrass die-off using remote sensing. Estuar Coast Shelf Sci. 2015a;154:111–21.CrossRefGoogle Scholar
  5. Kim YK, Kim SH, Lee K-S. Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuar Coast. 2015b;38:558–68.CrossRefGoogle Scholar
  6. Lee K-S, Park SR, Kim J-B. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar Biol. 2005;147(5):1091–108.CrossRefGoogle Scholar
  7. Lee K-S, Park J-I, Kim YK, Park SR, Kim J-H. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar Ecol Prog Ser. 2007;342:105–15.CrossRefGoogle Scholar
  8. Li W-T, Kim SH, Kim JW, Kim J-H, Lee K-S. An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary. Estuar Coast Shelf Sci. 2013;118:72–9.CrossRefGoogle Scholar
  9. Park J-I, Lee K-S. Peculiar growth dynamics of the surfgrass Phyllospadix japonicus on the southeastern coast of Korea. Mar Biol. 2009;156(11):2221–33.CrossRefGoogle Scholar
  10. Park SR, Kim J-H, Kang C-K, An S, Chung IK, Kim JH, Lee K-S. Current status and ecological roles of Zostera marina after recovery from large-scale reclamation in the Nakdong River estuary, Korea. Estuar Coast Shelf Sci. 2009;81:38–48.CrossRefGoogle Scholar
  11. Park SR, Kim YK, Kim J-H, Kang C-K, Lee K-S. Rapid recovery of the intertidal seagrass Zostera japonica following intense Manila clam (Ruditapes philippinarum) harvesting activity in Korea. J Exp Mar Biol Ecol. 2011;407:275–83.CrossRefGoogle Scholar
  12. Short F, Carruthers T, Dennison W, Waycott M. Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol. 2007;350:3–20.CrossRefGoogle Scholar
  13. Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Judson Kenworthy W, La Nafie YA, Nasution IM, Orth RJ, Prathep A, Sanciangco JC, van Tussenbroek B, Vergara SG, Waycott M, Zieman JC. Exinction risk assessment of the world’s seagrass species. Biol Conserv. 2011;144:1961–71.CrossRefGoogle Scholar
  14. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck Jr KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci. 2009;106:12377–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kun-Seop Lee
    • 1
  • Seung Hyeon Kim
    • 1
  • Young Kyun Kim
    • 1
  1. 1.Department of Biological SciencesPusan National UniversityBusanSouth Korea

Personalised recommendations