Consequences for Cerebellar Development of Very Premature Birth

Abstract

Premature birth is a major public health problem. It is associated with damage to the developing nervous system and it is now becoming clear that the cerebellum may be particularly adversely affected. This chapter introduces premature birth, and reviews the recently acquired information about cerebellar development, and how this impacts on the development of behavior and cognition.

Keywords

Attention Deficit Hyperactivity Disorder Anorexia Nervosa Preterm Infant Preterm Birth Bulimia Nervosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allin M, Henderson M, Suckling J, Nosarti C, Rushe T, Fearon P, Stewart AL, Bullmore ET, Rifkin L, Murray RM (2004) The effects of very low birth weight on brain structure in adulthood. Dev Med Child Neurol 46:46–53PubMedCrossRefGoogle Scholar
  2. Allin MPG (2010) Preterm babies grown up: understanding a hidden public health problem. Psychol Med 40:5–7PubMedCrossRefGoogle Scholar
  3. Allin MPG, Matsumoto H, Santhouse AM, Nosarti C, Al-Asady MHS, Stewart AL, Rifkin L, Murray RM (2001) Cognitive and motor function and the size of the cerebellum in adolescents born very preterm. Brain 124:60–66PubMedCrossRefGoogle Scholar
  4. Allin MPG, Salaria S, Nosarti C, Wyatt J, Rifkin L, Murray RM (2005) Vermis and lateral lobes of the cerebellum in adolescents born very preterm. Neuro Rep 16:1821–1824Google Scholar
  5. Allin MPG, Rooney M, Cuddy M, Wyatt J, Walshe M, Rifkin L, Murray RM (2006) Personality in young adults who are born preterm. Pediatrics 117:309–316PubMedCrossRefGoogle Scholar
  6. Allin MPG, Walshe M, Fern A, Nosarti C, Rushe T, Cuddy M, Wyatt J, Rifkin L, Murray R (2008) Cognitive maturation in preterm and term born adolescents. J Neurol Neurosurg Psychiatry 79:381–386PubMedCrossRefGoogle Scholar
  7. Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM (2000) BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol 166:99–114PubMedCrossRefGoogle Scholar
  8. Andreasen NC, Paradiso S, O'Leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull 24(2):203–218PubMedCrossRefGoogle Scholar
  9. Asherson P, Adamou M, Bolea B, Muller U, Morua SD, Pitts M, Thome J, Young S (2010) Is ADHD a valid diagnosis in adults? Yes. Brit Med J 340:c549PubMedCrossRefGoogle Scholar
  10. Back SA (2006) Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev 12:129–140PubMedCrossRefGoogle Scholar
  11. Berkowitz G, Papiernik E (1993) Epidemiology of preterm birth. Epidemiol Rev 15:414–443PubMedGoogle Scholar
  12. Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, Luster A, Corfas G, Segal RA (2002) BDNF stimulates migration of cerebellar granule cells. Development 129:1435–1442PubMedGoogle Scholar
  13. Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparén P, Cnattingius S (2009) Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 124:e817–e825PubMedCrossRefGoogle Scholar
  14. Byrne M, Agerbo E, Bennedsen B, Easton WW, Mortensen PB (2007) Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr Res 97:51–59PubMedCrossRefGoogle Scholar
  15. Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159:1080–1092PubMedCrossRefGoogle Scholar
  16. Cheung YB, Khoo KS, Karlberg J, Machin D (2002) Association between psychological symptoms in adults and growth in early life: longitudinal follow-up study. Brit Med J 325(7367):749PubMedCrossRefGoogle Scholar
  17. Cnattingius S, Hultman CM, Dahl M, Sparén P (1999) Very preterm birth, birth trauma, and the risk of anorexia nervosa among girls. Arch Gen Psychiatry 56:634–638PubMedCrossRefGoogle Scholar
  18. Collis WRF, Majekodunmi MA (1943) The premature infant: management and prognosis. Brit Med J 33:4279–4282Google Scholar
  19. Cooke RWI (1993) Annual audit of three year outcome in very low birth weight infants. Arch Dis Child 69:295–298PubMedCrossRefGoogle Scholar
  20. Counsell SJ, Shen Y, Boardman JP, Larkman DJ, Kapellou O, Ward P, Allsop JM, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386PubMedCrossRefGoogle Scholar
  21. Deng W (2010) Neurobiology of injury to the developing brain. Nat Rev Neurol 6:328–336PubMedCrossRefGoogle Scholar
  22. Dobbing J (1974) The later growth of the brain and its vulnerability. Pediatrics 53(1):2–6PubMedGoogle Scholar
  23. Drobyshevsky A, Derrick M, Prasad PV, Ji X, Englof I, Tan S (2007) Fetal brain magnetic resonance imaging response acutely to hypoxia-ischemia predicts postnatal outcome. Ann Neurol 61:307–314PubMedCrossRefGoogle Scholar
  24. Dutt A, Shaikh M, Ganguly T, Walshe M, Arranz M, Rifkin L, McDonald C, Bramon E, Nosarti C, Murray RM, McGuire P, Allin MPG (2011) COMT gene polymorphism and corpus callosum morphometry in preterm born adults. Neuro Image 54(1):148–153PubMedGoogle Scholar
  25. Dyet LA, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, Harrison M, Allsop JM, Hajnal J, Herlihy AH, Edwards B, Laroche S, Cowan FM, Rutherford MA, Edward AD (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118:536–548PubMedCrossRefGoogle Scholar
  26. Favaro A, Tenconi E, Santonastaso P (2006) Perinatal factors and the risk of developing anorexia nervosa and bulimia nervosa. Arch Gen Psychiatry 63:82–88PubMedCrossRefGoogle Scholar
  27. Foulder-Hughes LA, Cooke RWI (2003) Motor, cognitive and behavioural disorders in children born very preterm. Dev Med Child Neurol 45:97–103PubMedCrossRefGoogle Scholar
  28. Gale CR, Martyn CN (2004) Birth weight and later risk of depression in a national birth cohort. Brit J Psychiatry 184:28–33CrossRefGoogle Scholar
  29. Gallo V, Kingsbury A, Balazs R, Jorgensen OS (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci 7:2203–2213PubMedGoogle Scholar
  30. Gerschcovich ER, Cerquetti D, Tenca E, Leiguarda R (2011) The impact of bilateral cerebellar damage on theory of mind, empathy and decision making. Neurocase 17:270–275CrossRefGoogle Scholar
  31. Guyer B, Hoyert DL, Martin JA, Ventura SJ, MacDorman MF, Strobino DM (1999) Annual summary of vital statistics–1998. Pediatrics 104:1229–1246PubMedCrossRefGoogle Scholar
  32. Hack M, Youngstrom EA, Cartar L, Schluchter M, Taylor HG, Flannery D et al (2004) Behavioral outcomes and evidence of psychopathology among very low birth weight infants at age 20 years. Pediatrics 114:932–940PubMedCrossRefGoogle Scholar
  33. Hack M, Cartar L, Schluchter M, Klein N, Forrest C (2007) Self-perceived health, functioning and well-being of very low birth weight infants at age 20 years. J Pediatr 151:635–641PubMedCrossRefGoogle Scholar
  34. Hart AR, Whitby EH, Clark SJ, Paley MNJ, Smith MF (2010) Diffusion-weighted imaging of cerebral white matter and the cerebellum following preterm birth. Dev Med Child Neurol 52:652–659PubMedCrossRefGoogle Scholar
  35. Hatab MR, Kamourieh SW, Twickler DM (2008) MR volume of the fetal cerebellum in relation to growth. J Mag Reson Imag 27:840–845CrossRefGoogle Scholar
  36. Hoon A (1995) Neuroimaging in the high risk infant: relationship to outcome. J Perinatol 15:389–394PubMedGoogle Scholar
  37. Hutton LC, Yan E, Yawno T, Castillo-Melendez M, Hirst JJ, Walker DW (2007) Injury of the developing cerebellum: a brief review of the effects of endotoxin and asphyxial challenges in the late gestation sheep fetus. Cerebellum 1:1–10Google Scholar
  38. Indredavik MS, Vik T, Heyerdahl S et al (2004) Psychiatric symptoms and disorders in adolescents with low birth weight. Arch Dis Child Fetal Neonatal 89:F445–F450CrossRefGoogle Scholar
  39. Indredavik MS, Vik T, Heyerdahl S, Kulseng S, Brubakk AM (2005) Psychiatric symptoms in Low Bith Weight adolescents, assessed by screening questionnaires. Eur J Child Adolesc Psychiatry 14:226–236CrossRefGoogle Scholar
  40. Johnston MV (1998) Selective vulnerability in the neonatal brain. An Neurol 44:155–156CrossRefGoogle Scholar
  41. Joos A, Klöppel S, Hartmann A, Glauche V, Tüscher O, Perlov E, Saum B, Freyer T, Zeeck A, van Elst LT (2010) Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatr Res Neuroimag 182:146–151CrossRefGoogle Scholar
  42. Joseph KS, Kramer MS, Marcoux S, Ohlsson A, Wen SW, Allen A, Platt R (1998) Determinants of preterm birth rates in Canada from 1981 through 1983 and from 1992 through 1994. New Engl J Med 339:1434–1439PubMedCrossRefGoogle Scholar
  43. Koeppen AH, Michael SC, Li D et al (2008) The pathology of superficial siderosis of the central nervous system. Acta Neuropathol 116(4):371–382PubMedCrossRefGoogle Scholar
  44. Leiner HC (2010) Solving the mystery of the human cerebellum. Neuropsychol Rev 20:229–235PubMedCrossRefGoogle Scholar
  45. Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100(4):443–454PubMedCrossRefGoogle Scholar
  46. Leiner HC, Leiner AL, Dow RS (1989) Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci 103(5):998–1008PubMedCrossRefGoogle Scholar
  47. Leiner HC, Leiner AL, Dow RS (1991) The human cerebrocerebellar system: its computing, cognitive, and language skills. Behav Brain Res 44(2):113–128PubMedCrossRefGoogle Scholar
  48. Leiner HC, Leiner AL, Dow RS (1993) Cognitive and language functions of the human cerebellum. Trends Neurosci 16(11):444–447PubMedCrossRefGoogle Scholar
  49. Limperopoulos C, Benson CB, Bassan H, Disalvo DN, Kinnamon DD, Moore M, Ringer SA, Volpe JJ, du Plessis AJ (2005a) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116(3):717–724PubMedCrossRefGoogle Scholar
  50. Limperopoulos C, Soul JS, Gauvreau K et al (2005b) Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics 115:688–695PubMedCrossRefGoogle Scholar
  51. Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, Robertson RL, Moore M, Akins P, Volpe JJ, du Plessis AJ (2005c) Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics 116:844–850PubMedCrossRefGoogle Scholar
  52. Limperopoulos C, Bassan H, Sullivan NR, Soul JS, Robertson RL, Moore M, Ringer SA, Volpe JJ, du Plessis AJ (2008) Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics 121:758–765PubMedCrossRefGoogle Scholar
  53. Lindström K, Lindblad F, Hjern A (2009) Psychiatric morbidity in adolescents and young adults born preterm: a Swedish national cohort study. Pediatrics 123:e47–e53. doi:10.1542/peds.2008-1654PubMedCrossRefGoogle Scholar
  54. Lumely J (2003) Defining the problem: the epidemiology of preterm birth. JOG Int J Obstet Gynaecol 110(20):3–7CrossRefGoogle Scholar
  55. Mangham LJ, Petrou S, Doyle LW, Draper ES, Marlow N (2009) The cost of preterm birth throughout childhood in England and Wales. Pediatrics 123(2):e312PubMedCrossRefGoogle Scholar
  56. Marin-Padilla M (1996) Developmental neuropathology and impact of perinatal brain damage. I: hemorrhagic lesions of neocortex. J Neuropathol Exp Neurol 55:758–773PubMedCrossRefGoogle Scholar
  57. Marin-Padilla M (1997) Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of neocortex. J Neuropathol Exp Neurol 56:219–235PubMedCrossRefGoogle Scholar
  58. Marin-Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage III: gray matter lesions of neocortex. J Neuropathol Exp Neurol 58:407–429PubMedCrossRefGoogle Scholar
  59. Martinussen M, Flanders DW, Fischl B, Busa E, Løhaugen GC, Psychola C, Skranes J, Vangberg TR, Brubakk A-M, Haraldseth O, Dale AM (2009) Segmental brain volumes and cognitive and perceptual correlates in 15-Year-Old adolescents with low birth weight. J Pediatr 155:848–853PubMedCrossRefGoogle Scholar
  60. McCormick MC, Gortmaker SL, Sobol AM (1990) Very low birth weight children – behaviour problems and school difficulty in a national sample. J Pediatr 117:687–693PubMedCrossRefGoogle Scholar
  61. McHughen SA, Rodriguez PF, Kleim JA, Kleim ED, Crespo LM, Procaccio V, Cramer SC (2010) BDNF Val66met polymorphism influences motor system function in the human brain. Cerebr Cortex 20:1254–1262CrossRefGoogle Scholar
  62. Menezes AH, Smith DE, Bell WE (1983) Posterior fossa hemorrhage in the term neonate. Neurosurgery 13:452–456PubMedCrossRefGoogle Scholar
  63. Mercuri E, He J, Curati WL, Dubowitz LM, Cowan FM, Bydder GM (1997) Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol 27:139–143PubMedCrossRefGoogle Scholar
  64. Merrill JD, Piecuch RE, Fell SC, Barkovich AJ, Goldstein RB (1998) A new pattern of cerebellar hemorrhages in preterm infants. Pediatrics 102(6):E62PubMedCrossRefGoogle Scholar
  65. Messerschmidt A, Prayer D, Brugger PC et al (2008) Preterm birth and disruptive cerebellar development: assessment of perinatal risk factors. Eur J Paediatr Neurol 12(6):455–460PubMedCrossRefGoogle Scholar
  66. Miall LS, Cornette LG, Tanner SF, Arthur RJ, Levene MI (2003) Posterior fossa abnormalities seen on magnetic resonance brain imaging in a cohort of newborn infants. J Perinatol 23:396–403PubMedCrossRefGoogle Scholar
  67. Miller SP, Vigneron DB, Henry RG, Bohland MA, Ceppi-Cozzio C, Hoffman C, Newton N, Partridge JC, Ferriero DM, Barkovich AJ (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imag 16:621–632CrossRefGoogle Scholar
  68. Mittendorfer-Rutz E, Rasmussen F, Wasserman D (2004) Restricted fetal growth and adverse maternal psychosocial and socioeconomic conditions as risk factors for suicidal behaviour of offspring: a cohort study. Lancet 364(9440):1135–1140PubMedCrossRefGoogle Scholar
  69. Mittendorfer-Rutz E, Wasserman D, Rasmussen F (2008) Fetal and childhood growth and the risk of violent and non-violent suicide attempts: a cohort study of 318,953 men. J Epidemiol Comm Health 62:168–173CrossRefGoogle Scholar
  70. Moster D, Terje Lie R, Markestad T (2008) Long-term medical and social consequences of preterm birth. N Engl J Med 359:262–273PubMedCrossRefGoogle Scholar
  71. Murphy BP, Inder TE, Huppi PS et al (2001) Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 107(2):217–221PubMedCrossRefGoogle Scholar
  72. Narberhaus A, Lawrence E, Allin MPG, Walshe M, McGuire PK, Rifkin L, Murray RM, Nosarti C (2009) Neural substrates of visual paired associates in young adults with a history of very preterm birth: alterations in fronto-parieto-occipital networks and caudate nucleus. Neuroimage 47:1884–1893PubMedCrossRefGoogle Scholar
  73. Neville HE, Chase HP (1971) Undernutrition and cerebellar development. Exp Neurol 33:485–497PubMedCrossRefGoogle Scholar
  74. Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, Straub RE, Weinberger DR (2008) Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol Psychiat 13:873–877CrossRefGoogle Scholar
  75. Noguchi KK, Walls KC, Wozniak DF, Olney JW, Roth KA, Farber NB (2008) Acute neonatal glucocorticoid exposure produces selective and rapid cerebellar neural progenitor cell apoptotic death. Cell Death Differ 15(10):1582–1592PubMedCrossRefGoogle Scholar
  76. Nosarti C, Hultman CM, Cnattingius S et al (2008) Preterm birth and psychiatric outcome in adolescence and early adulthood: a study using the Swedish national registers. Schizophr Res 98(Suppl 1):76CrossRefGoogle Scholar
  77. Nosarti C, Walshe M, Rushe TM, Rifkin L, Wyatt J, Murray RM, Allin MPG (2011) Neonatal ultrasound results following very preterm birth predict adolescent behavioural and cognitive outcome. Devl Neuropsychol 36:118–135CrossRefGoogle Scholar
  78. O’Brien M, Soliday E, McCluskey-Fawcett K (1995) Prematurity and the neonatal intensive care unit. In: Roberts MC (ed) Handbook of pediatric psychology. Guildford, New York, pp 463–478Google Scholar
  79. Olsen P, Laara E, Rantakallio P et al (1995) Epidemiology of preterm delivery in two birth cohorts with an interval of 20 years. Am J Epidemiol 142:1184–1193PubMedGoogle Scholar
  80. Paneth N, Rudelli R, Kazam E, Monte W (1994) Brain damage in the preterm infant. Mac Keith Press/Cambridge University Press, LondonGoogle Scholar
  81. Pape KE, Cusick G, Blackwell RJ, Houang MTW, Sherwood A, Thorburn RJ, Reynolds EOR (1979) Ultrasound detection of brain damage in preterm infants. Lancet 313(8129):1261–1264CrossRefGoogle Scholar
  82. Parikh NA, Lasky RE, Kennedy KA, Moya FR, Hochhauser L, Romo S, Tyson JE (2007) Postnatal dexamethasone therapy and cerebral tissue volumes in extremely low birth weight infants. Pediatrics 119:265–272PubMedCrossRefGoogle Scholar
  83. Parker J, Mitchell A, Kalpakidou A, Walshe M, Yeon-Jung H, Nosarti C, Santosh P, Rifkin L, Wyatt J, Murray RM, Allin MPG (2008) Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain 131(5):1344–1351PubMedCrossRefGoogle Scholar
  84. Patton GC, Coffey C, Carlin JB, Olsson CA, Morley R (2004) Prematurity at birth and adolescent depressive disorder. Brit J Psychiat 184:446–447PubMedCrossRefGoogle Scholar
  85. Perlman JM, Nelson JS, McAlister WH, Volpe JJ (1983) Intracerebellar hemorrhage in a premature newborn: diagnosis by real-time ultrasound and correlation with autopsy findings. Pediatrics 71:159–162PubMedGoogle Scholar
  86. Peterson BS, Vohr B, Staib LH, Cannistraci CJ, Dolberg A, Schneider KC, Katz KH, Westerveld M, Sparrow S, Anderson AW, Duncan CC, Makuch RW, Gore JC, Ment LR (2000) Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. J Am Med Assoc 284:1939–1947CrossRefGoogle Scholar
  87. Powls A, Botting N, Cooke RWI, Marlow N (1995) Motor impairments in children 12 to 13 years old with a birthweight less than 1250 g. Arch Dis Childhood 72:F62–F66CrossRefGoogle Scholar
  88. Pyhälä R, Räikkönen K, Pesonen A-K, Heinonen K, Hovi P, Eriksson JG, Järvenpää A-L, Andersson S, Kajantie E (2009) Behavioral inhibition and behavioral approach in young adults with very low birth weight – The Helsinki study of very low birth weight adults. Personal Individ Differ 46:106–110CrossRefGoogle Scholar
  89. Richards M, Wardsworth M, Rahimi-Foroushani A, Hardy R, Kuh D, Paul A (1998) Infant nutrition and cognitive development in the first offspring of a national UK birth cohort. Dev Med Child Neurol 40(3):163–167PubMedGoogle Scholar
  90. Riordan DV, Selvaraj S, Stark C, Gilbert JS (2006) Perinatal circumstances and risk of offspring suicide. Brit J Psychiat 189:502–507PubMedCrossRefGoogle Scholar
  91. Rollins NK, Wen TS, Dominguez R (1995) Crossed cerebellar atrophy in children: a neurologic sequela of extreme prematurity. Pediatr Radiol 25(Suppl 1):S20–S25PubMedGoogle Scholar
  92. Rushe TM, Rifkin L, Stewart AL, Townsend JP, Roth SC, Wyatt JS, Murray RM (2001) Neuropsychological outcome at adolescence of very preterm birth and its relation to brain structure. Dev Med Child Neurol 43:226–233PubMedCrossRefGoogle Scholar
  93. Saigal S, Doyle LW (2008) Preterm Birth 3. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371:261–269PubMedCrossRefGoogle Scholar
  94. Saigal S, Pinelli J, Hoult L, Kim MM, Boyle M (2003) Psychopathology and social competencies of adolescents who were extremely low birth weight. Pediatrics 111:969–975PubMedCrossRefGoogle Scholar
  95. Sajan SA, Waimey KE, Millen KJ (2010) Novel approaches to studying the genetic basis of cerebellar development. Cerebellum 9:272–283PubMedCrossRefGoogle Scholar
  96. Schendel D, Bhasin TK (2008) Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics 121:1155–1164PubMedCrossRefGoogle Scholar
  97. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive-affective syndrome. Brain 121:561–579PubMedCrossRefGoogle Scholar
  98. Slattery MM, Morrison JJ (2002) Preterm delivery. Lancet 360:1489–1497PubMedCrossRefGoogle Scholar
  99. Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, Neil JJ (2010) Longitudinal analysis of neural network development in preterm infants. Cerebr Cortex 20:2852–2862CrossRefGoogle Scholar
  100. Sohma O, Mito T, Mizuguchi M, Takashima S (1995) The prenatal age critical for the development of the pontosubicular necrosis. Acta Neuropathol (Berl) 90:7–10CrossRefGoogle Scholar
  101. Spreen O, Risser AH, Edgell D (1995) Prematurity and low birth weight, Developal Neuropsychology. Oxford University Press, Oxford, pp 212–232Google Scholar
  102. Srinivasan L, Allsop J, Counsell SJ, Boardman JP, Edwards AD, Rutherford M (2006) Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 27(3):573–579PubMedGoogle Scholar
  103. Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM (2008) Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23:289–299PubMedCrossRefGoogle Scholar
  104. Stewart AL, Reynolds EO, Lipscomb AP (1981) Outcome for infants of very low birth weight: Survey of world literature. Lancet 1(8228):1038–1040PubMedCrossRefGoogle Scholar
  105. Stewart AL, Thorburn RJ, Hope PL, Goldsmith M, Lipscomb AP, Reynolds EO (1983) Ultrasound appearance of the brain in very preterm infants and neurodevelopmental outcome at 18 months of age. Arch Dis Child 58:598–604PubMedCrossRefGoogle Scholar
  106. Strauss RS (2000) Adult functional outcome of those born small for gestational age: twenty-six–year follow-up of the 1970 British birth cohort. J Am Med Assoc 283:625–632CrossRefGoogle Scholar
  107. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434PubMedCrossRefGoogle Scholar
  108. Szatmari P, Saigal S, Rosenbaum P, Campbell D (1993) Psychopathology and adaptive functioning among extremely low birth weight children at 8 years of age. Dev Psychopathol 5:345–357CrossRefGoogle Scholar
  109. Tam EWY, Miller SP, Studholme C, Chau V, Glidden D, Poskitt KJ, Ferriero DM, Barkovich AJ (2010) Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 158:366–371. doi:10.1016/j.jpeds.2010.09.005PubMedGoogle Scholar
  110. Taylor HG, Klein N, Minich N, Hack M (2000) Middle school-age outcomes in children with very low birthweight. Child Dev 71:1495–1511PubMedCrossRefGoogle Scholar
  111. Thompson C, Syddall H, Rodin I, Osmond C, Barker DJ (2001) Birth weight and the risk of depressive disorder in late life. Brit J Psychiatry 179:450–455CrossRefGoogle Scholar
  112. Vaillant C, Monard D (2009) SHH pathway and cerebellar development. Cerebellum 8:291–301PubMedCrossRefGoogle Scholar
  113. Valera EM, Faraone SV, Murray KE, Seidman LJ (2007) Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 61:1361–1369PubMedCrossRefGoogle Scholar
  114. Volpe JJ (1998) Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Sem Pediatr Neurol 5(3):135–151CrossRefGoogle Scholar
  115. Volpe JJ (2003) Cerebral white matter injury of the premature infant – more common than you think. Pediatrics 112:176–180PubMedCrossRefGoogle Scholar
  116. Volpe JJ (2009) Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. Child Neurol 24:1085–1104CrossRefGoogle Scholar
  117. von Gontard A, Arnold D, Adis B (1988) Posterior fossa hemorrhage in the newborn–diagnosis and management. Pediatr Radiol 18:347–348CrossRefGoogle Scholar
  118. Walshe M, McDonald C, Taylor M, Zhao J, Sham P, Grech A, Schulze K, Bramon E, Murray RM (2005) Obstetric complications in patients with schizophrenia and their unaffected siblings. Eur Psychiatry 20:28–34PubMedCrossRefGoogle Scholar
  119. Walshe M, Rifkin L, Rooney M, Healy E, Fern A, Wyatt J, Murray RM, Allin MPG (2008) Psychiatric disorder in young adults born very preterm: role of family history. Eur Psychiatry 23:527–531PubMedCrossRefGoogle Scholar
  120. Ward RM, Beachy JC (2003) Neonatal complications following preterm birth. BJOG Int J Obstet Gynaecol 110:8–16Google Scholar
  121. Wolke D (1991) Annotation: supporting the development of low birthweight infants. J Child Psychol Psychiatry 32:723–741PubMedCrossRefGoogle Scholar
  122. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–69PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Psychosis StudiesBiomedical Research Centre for Mental Health, Institute of Psychiatry and King’s College LondonLondonUnited Kingdom

Personalised recommendations