Cerebellum and Cognition

Reference work entry


Despite the idea that cerebellar input into cognition is a new concept, looking back in history one can see that this function of the cerebellum has long been discussed and was merely forgotten in the middle of the last century! Over the last several decades, the importance of the cerebellum in cognitive development has been shown in many areas. Children who suffer from congenital cerebellar malformations such as cerebellar hypoplasia or Joubert syndrome experience, in addition to motor problems, marked cognitive deficits. The degree of congenital or early acquired cerebellar damage is related to the degree of developmental problems later, as shown for preterm babies. There are many childhood developmental problems, such as fragile X syndrome, ADHD, dyslexia, and autism, where it can be shown that the degree of cerebellar structural abnormalities relates to cognitive deficits. In later acquired problems, such as infratentorial brain tumors or strokes, and late-onset cerebellar disorders, such as Friedreich’s ataxia or Louis-Bar syndrome, data show the importance of an intact cerebellum for the normal development of children. The degree of cerebellar atrophy in children after brain trauma or oncological treatments is a prognostic signpost for cognitive problems.

Recent functional neuroimaging data support these clinical observations: the posterior lobe and lobule VI of the cerebellum seem to be involved in higher-level tasks such as verbal and working memory and executive functions. There are also data supporting a lateralized function: logical reasoning and language processing on the right side and visuospatial and attentional skills on the left side of the cerebellum.

In summary, normal development of cognition seems to depend on an active interplay between cerebrum and cerebellum. The earlier in life and the more pronounced the disturbance of this interplay, the more the cognitive development of these children is hindered.


Down Syndrome Cognitive Problem Cerebellar Volume Cerebellar Hypoplasia Arterial Ischemic Stroke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, Rifkin L, Murray RM (2001) Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain 124:60–66PubMedCrossRefGoogle Scholar
  2. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145PubMedCrossRefGoogle Scholar
  3. Anton G, Zingerle H (1914) Genaue Beschreibung eines Falles vonbeiderseitigem Kleinhirnmangel. Arch Psychiatr 54:8–75CrossRefGoogle Scholar
  4. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P (2008) Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg 110(8):763–773PubMedCrossRefGoogle Scholar
  5. Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Marià P (2010) Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex 46:869–879PubMedCrossRefGoogle Scholar
  6. Beebe DW, Ris MD, Armstrong FD, Fontanesi J, Mulhern R, Holmes E, Wisoff JH (2005) Cognitive and adaptive outcome in low-grade pediatric cerebellar astrocytomas: evidence of diminished cognitive and adaptive functioning in National Collaborative Research Studies (CCG 9891/POG 9130). J Clin Oncol 23(22):5198–5204PubMedCrossRefGoogle Scholar
  7. Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, Castellanos FX (1998) Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 50(4):1087–1093PubMedCrossRefGoogle Scholar
  8. Boddaert N, Klein O, Ferguson N, Sonigo P, Parisot D, Hertz-Pannier L, Baraton J, Emond S, Simon I, Chigot V, Schmitt P, Pierre-Kahn A, Brunelle F (2003) Intellectual prognosis of the Dandy-Walker malformation in children: the importance of vermian lobulation. Neuroradiology 45(5):320–324PubMedGoogle Scholar
  9. Bodensteiner JB, Johnsen SD (2005) Cerebellar injury in the extremely premature infant: newly recognized but relatively common outcome. J Child Neurol 20(2):139–142PubMedCrossRefGoogle Scholar
  10. Bolduc ME, Limperopoulos C (2009) Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol 51(4):256–267PubMedCrossRefGoogle Scholar
  11. Botez M, Gravel J, Attig E, Vezina JL (1985) Reversible chronic cerebellar ataxia after phenytoin intoxication: possible role of cerebellum in cognitive thought. Neurology 35(8):1152–1157PubMedCrossRefGoogle Scholar
  12. Botez-Marquard T, Botez MI (1993) Cognitive behavior in heredodegenerative ataxias. Eur Neurol 33(5):351–357PubMedCrossRefGoogle Scholar
  13. Boyd JD (1940) A case of neocerebellar hypoplasia. J Anat 74:557Google Scholar
  14. Braga LW, Souza LN, Najjar YJ, Dellatolas G (2007) Magnetic resonance imaging (MRI) findings and neuropsychological sequelae in children after severe traumatic brain injury: the role of cerebellar lesion. J Child Neurol 22(9):1084–1089PubMedCrossRefGoogle Scholar
  15. Caroppo P, Orsi L, D’Agata F, Baudino B, Boghi A, Avidano F, Coriasco M, Bradac GB, Castellano G, Mutani R, Mortara P (2009) Neuropsychological and functional study in a case of partial cerebellar agenesis. Neurocase 15(5):373–383PubMedCrossRefGoogle Scholar
  16. Catsman-Berrevoets CE, Aarsen FK (2010) The spectrum of neurobehavioural deficits in the Posterior Fossa syndrome in children after cerebellar tumor surgery. Cortex 46(7):933–946PubMedCrossRefGoogle Scholar
  17. Ciesielski KT, Yanofsky R, Ludwig RN, Hill DE, Hart BL, Astur RS, Snyder T (1994) Hypoplasia of the cerebellar vermis and cognitive deficits in survivors of childhood leukemia. Arch Neurol 51(10):985–993PubMedCrossRefGoogle Scholar
  18. D’Arrigo S, Riva D, Bulgheroni S, Chiapparini L, Castellotti B, Gellera C, Pantaleoni C (2008) Ataxia with oculomotor apraxia type 1 (AOA1): clinical and neuropsychological features in 2 new patients and differential diagnosis. J Child Neurol 23(8):895–900PubMedCrossRefGoogle Scholar
  19. Fennell EB, Gitten JC, Dede DE, Maria BL (1999) Cognition, behavior and development in Joubert syndrome. J Child Neurol 14(9):592–596PubMedCrossRefGoogle Scholar
  20. Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115(1):155–178PubMedCrossRefGoogle Scholar
  21. Gerszten PC, Albright AL (1995) Relations Relationship between cerebellar appearance and function in children with Dandy-Walker syndrome. Pediatr Neurosurg 23:86–92PubMedCrossRefGoogle Scholar
  22. Glickstein M (2007) What does the cerebellum really do? Curr Biol 17:R824–R827PubMedCrossRefGoogle Scholar
  23. Glickstein M, Strata P, Voogd J (2009) Cerebellum history. Review. Neuroscience 162:549–559PubMedCrossRefGoogle Scholar
  24. Gudrunardottir Th, Sehested A, Juhler M, Schmiegelow K (2011) Cerebellar mutism review of the literature. Childs Nerv Syst 27:355–363PubMedCrossRefGoogle Scholar
  25. Hallahan B, Daly EM, McAlonan G, Loth E, Toal F, O’Brien F, Robertson D, Hales S, Murphy C, Murphy KC, Murphy DG (2009) Brain morphometry volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychol Med 39(2):337–346PubMedCrossRefGoogle Scholar
  26. Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115(2):286–294PubMedCrossRefGoogle Scholar
  27. Jones W, Hesselink J, Courchesne E, Duncan T, Matsuda K, Bellugi U (2002) Cerebellar abnormalities in infants and toddlers with Williams syndrome. Dev Med Child Neurol 44(10):688–694PubMedCrossRefGoogle Scholar
  28. Kim SG, Uğurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265(5174):949–951PubMedCrossRefGoogle Scholar
  29. Kossorotoff M, Gonin-Flambois C, Gitiaux C, Quijano S, Boddaert N, Bahi-Buisson N, Barnerias C, Dulac O, Brunelle F, Desguerre I (2010) A cognitive and affective pattern in posterior fossa strokes in children: a case series. Dev Med Child Neurol 52(7):626–631PubMedCrossRefGoogle Scholar
  30. Krägeloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou HC (1999) Brain lesions in preterms: origin, consequences and compensation. Acta Paediatr 88(8):897–908PubMedCrossRefGoogle Scholar
  31. Kusano Y, Tanaka Y, Takasuna H, Wada N, Tada T, Kakizawa Y, Hongo K (2006) Transient cerebellar mutism caused by bilateral damage to the dentate nuclei after the second posterior fossa surgery. Case report. J Neurosurg 104(2):329–331PubMedCrossRefGoogle Scholar
  32. Leiner H, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100(4):443–454PubMedCrossRefGoogle Scholar
  33. Leiner HC, Leiner AL, Dow RS (1987) Cerebro-cerebellar learning loops in apes and humans. Ital J Neurol Sci 8:425–436PubMedCrossRefGoogle Scholar
  34. Leiner HC (2010) Solving the mystery of the human cerebellum. Neuropsychol Rev 20:229–235PubMedCrossRefGoogle Scholar
  35. Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123(Pt 5):1041–1050PubMedCrossRefGoogle Scholar
  36. Limperopoulos C, Chilingaryan G, Guizard N, Robertson RL, Du Plessis AJ (2010) Cerebellar injury in the premature infant is associated with impaired growth of specific cerebral regions. Pediatr Res 68(2):145–150PubMedCrossRefGoogle Scholar
  37. Luft AR, Manto MU, Ben Taib NO (2005) Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the cortex and cerebellum. Cerebellum 4:90–96PubMedCrossRefGoogle Scholar
  38. Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF 3rd, Sharp WS, Giedd JN, Rapoport JL (2007) Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry 164(4):647–655PubMedCrossRefGoogle Scholar
  39. MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in hominoidea. J Hum Evol 44:401–429PubMedCrossRefGoogle Scholar
  40. Malacarne MVG (1776) Nuova esposizione della vera struttura del cervelletto umano. Briolo, TorinoGoogle Scholar
  41. Malacarne MVG (1791) Sulla neuro-encefalotomia. Lettere anatomico-fisiologiche di Vincenzo Malacarne e Carlo Bonnet, s.i.t. PaviaGoogle Scholar
  42. Mantovan MC, Martinuzzi A, Squarzanti F, Bolla A, Silvestri I, Liessi G, Macchi C, Ruzza G, Trevisan CP, Angelini C (2006) Exploring mental status in Friedreich’s ataxia: a combined neuropsychological, behavioral and neuroimaging study. Eur J Neurol 13(8):827–835PubMedCrossRefGoogle Scholar
  43. Mariën P, Brouns R, Engelborghs S, Wackenier P, Verhoeven J, Ceulemans B, De Deyn PP (2008) Cerebellar cognitive affective syndrome without global mental retardation in two relatives with Gillespie syndrome. Cortex 44(1):54–67PubMedCrossRefGoogle Scholar
  44. Messerschmidt A, Fuiko R, Prayer D, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Weber M, Birnbacher R (2008) Disrupted cerebellar development in preterm infants is associated with impaired neurodevelopmental outcome. Eur J Pediatr 167(10):1141–1147PubMedCrossRefGoogle Scholar
  45. Moldrich RX, Dauphinot L, Laffaire J, Jean Rossier J, Potier MC (2007) Down syndrome gene dosage imbalance on cerebellum development. Prog Neurobiol 82:87–94PubMedCrossRefGoogle Scholar
  46. Moretti R, Bava A, Torre P, Antonello RM, Cazzato G (2002) Reading errors in patients with cerebellar vermis lesions. J Neurol 249(4):461–468PubMedCrossRefGoogle Scholar
  47. Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL (1998) Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology 50(1):121–130PubMedCrossRefGoogle Scholar
  48. Mostofsky SH, Kunze JC, Cutting LE, Lederman HM, Denckla MB (2000) Judgment of duration in individuals with ataxia-telangiectasia. Dev Neuropsychol 17(1):63–74PubMedCrossRefGoogle Scholar
  49. Nicolson R, Fawcett AJ, Dean P (2001) Dyslexia, development and the cerebellum. Trends Neurosci 24(9):515–516PubMedCrossRefGoogle Scholar
  50. O’Hare ED, Kan E, Yoshii J, Mattson SN, Riley EP, Thompson PM, Toga AW, Sowell ER (2005) Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport 16(12):1285–1290PubMedCrossRefGoogle Scholar
  51. Papavasiliou AS, Kotsalis C, Trakadas S (2004) Transient cerebellar mutism in the course of acute cerebellitis. Pediatr Neurol 30(1):71–74PubMedCrossRefGoogle Scholar
  52. Parrish JB, Weinstock-Guttman B, Yeh EA (2010) Cerebellar mutism in pediatric acute disseminated encephalomyelitis. Pediatr Neurol 42(4):259–266PubMedCrossRefGoogle Scholar
  53. Pasquier L, Marcorelles P, Loget P, Pelluard F, Charles D, Perrez MJ, Bendavid C, de La Rochebrochard C, Ferry M, David V, Odent S, Laquerriere A (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol 117:1185–1200CrossRefGoogle Scholar
  54. Poretti A, Boltshauser E, Loenneker T, Valente EM, Brancati F, II’yasov K, Huisman TA (2007) Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol 28(10):1929–1933PubMedCrossRefGoogle Scholar
  55. Poretti A, Dietrich Alber F, Brancati F, Dallapiccola B, Valente EM, Boltshauser E (2009a) Normal cognitive functions in Joubert syndrome. Neuropediatrics 40(6):287–290PubMedCrossRefGoogle Scholar
  56. Poretti A, Alber FD, Bürki S, Toelle SP, Boltshauser E (2009b) Cognitive outcome in children with rhombencephalosynapsis. Eur J Paediatr Neurol 13(1):28–33PubMedCrossRefGoogle Scholar
  57. Rae C, Karmiloff-Smith A, Lee MA, Dixon RM, Grant J, Blamire AM, Thompson CH, Styles P, Radda GK (1998) Brain biochemistry in Williams syndrome: evidence for a role of the cerebellum in cognition? Neurology 51(1):33–40PubMedCrossRefGoogle Scholar
  58. Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818PubMedCrossRefGoogle Scholar
  59. Rout UK, Dhossche DM (2008) A pathogenetic model of autism involving Purkinje cell loss through anti-GAD antibodies. Med Hypotheses 71(2):218–221PubMedCrossRefGoogle Scholar
  60. Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260PubMedCrossRefGoogle Scholar
  61. Schmahmann JD (1991) An emerging concept. The cerebellar contribution to higher functions. Arch Neurol 48(11):1178–1187PubMedCrossRefGoogle Scholar
  62. Schmahmann JD, Sherman JC (1997) Cerebellar cognitive affective syndrome. Int Rev Neurobiol 41:433–440PubMedCrossRefGoogle Scholar
  63. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(Pt 4):561–579PubMedCrossRefGoogle Scholar
  64. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, Mitchell CD (2001) Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 43(10):685–691PubMedCrossRefGoogle Scholar
  65. Senocak EU, Oğuz KK, Haliloğlu G, Topçu M, Cila A (2010) Structural abnormalities of the brain other than molar tooth sign in Joubert syndrome-related disorders. Diagn Interv Radiol 16(1):3–6PubMedGoogle Scholar
  66. Shevell MI, Majnemer A (1996) Clinical features of developmental disability associated with cerebellar hypoplasia. Pediatr Neurol 15:224–229PubMedCrossRefGoogle Scholar
  67. Shiihara T, Watanabe M, Honma A, Kato M, Morita Y, Ichiyama T, Maruyama K (2007) Rotavirus associated acute encephalitis/encephalopathy and concurrent cerebellitis: report of two cases. Brain Dev 29(10):670–673PubMedCrossRefGoogle Scholar
  68. Snider RS (1950) Recent contribution to the anatomy and physiology. Arch Neurol Psychiatr 64(2):196–219Google Scholar
  69. Snider RS, Maiti A (1976) Cerebellar contribution to the Papez circuit. J Neurosci Res 2(2):133–146PubMedCrossRefGoogle Scholar
  70. Soto-Ares G, Vinchon M, Delmaire C, Abecidan E, Dhellemes P, Pruvo JP (2001) Cerebellar atrophy after severe traumatic head injury in children. Childs Nerv Syst 17(4–5):263–269PubMedCrossRefGoogle Scholar
  71. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lövblad KO, Ridolfi Lüthy A, Perrig W, Kaufmann F (2003) Neuropsychological long-term sequelae after posterior fossa tumor resection during childhood. Brain 126(Pt 9):1998–2008PubMedCrossRefGoogle Scholar
  72. Steinlin M, Zangger B, Boltshauser E (1998) Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol 4:148–154Google Scholar
  73. Steinlin M, Zangger B, Boltshauser E (1999) Cognitive impairments in patients with congenital nonprogressive cerebellar ataxia. Neurology 53:966–973PubMedCrossRefGoogle Scholar
  74. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2):489–501PubMedCrossRefGoogle Scholar
  75. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–844PubMedCrossRefGoogle Scholar
  76. Stoodley CJ, Harrison EP, Stein JF (2006) Implicit motor learning deficits in dyslexic adults. Neuropsychologia 44(5):795–798PubMedCrossRefGoogle Scholar
  77. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434PubMedCrossRefGoogle Scholar
  78. Tasdemiroğlu E, Kaya M, Yıldırım CH, Fırat L (2010) Postoperative cerebellar mutism and autistic spectrum disorder. Child Nerv Syst 27(6):869–878CrossRefGoogle Scholar
  79. Tavano A, Borgatti R (2010) Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex 46:907–918PubMedCrossRefGoogle Scholar
  80. Tennstedt H (1965) Kleinhirnaplasie beim Erwachsenen. Zblatt Allg Pathol 107:301–304Google Scholar
  81. Ventura P, Presicci A, Perniola T, Campa MG, Margari L (2006) Mental retardation and epilepsy in patients with isolated cerebellar hypoplasia. J Child Neurol 21(9):776–781PubMedCrossRefGoogle Scholar
  82. Vesalius A (1543) De humani corporis fabrica libris septem. Oporini, BaselGoogle Scholar
  83. Wells EM, Walsh KS, Khademian ZP, Keating RF, Packer RJ (2008) The cerebellar mutism syndrome and its relation to cerebellar cognitive function and the cerebellar cognitive affective disorder. Dev Disabil Res Rev 14(3):221–228PubMedCrossRefGoogle Scholar
  84. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de Water J (2008) Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 23(1):64–74PubMedCrossRefGoogle Scholar
  85. Wingeier K, Bigi S, El-Koussy M, Heinks-Maldonado T, Boltshauser E, Steinlin M (2010) Long-term sequelae after acquired pediatric hemorrhagic cerebellar lesions. Childs Nerv Syst 27:923–931PubMedCrossRefGoogle Scholar
  86. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91PubMedCrossRefGoogle Scholar
  87. Ziegler AL, Deonna T, Calame A (1990) Hidden intelligence of a multiply handicapped child with Joubert syndrome. Dev Med Child Neurol 32(3):261–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.NeuropaediatricsUniversity Children's Hospital InselspitalBernSwitzerland

Personalised recommendations