Rolling Nagoya Mouse

  • Jaap J. Plomp
  • Arn M. J. M. van den Maagdenberg
Reference work entry

Abstract

The natural mutant mouse rolling Nagoya has an uncoordinated gait and frequently displays sideways body rolls. The mutation underlying this autosomal recessively inherited severely ataxic motor phenotype is present in Cacna1a, the gene encoding the pore-forming α1 subunit of CaV2.1 type voltage-gated Ca2+ channels. This type of channel is crucially involved in neuronal Ca2+ signaling and in neurotransmitter release from nerve terminals at many central synapses and, in the periphery, at the neuromuscular junction. This chapter reviews the phenotypic, motor behavioral, histological, biochemical, neurophysiological, and electrophysiological findings in this mouse mutant. Human neurological diseases exist which are associated with CaV2.1 dysfunction (“Ca2+-channelopathy”), either due to CACNA1A mutation or autoimmune attack. The relevance of the rolling Nagoya mouse mutant as a model for these diseases is discussed.

Keywords

Purkinje Cell Tyrosine Hydroxylase Cerebellar Ataxia Cerebellar Purkinje Cell Congenital Myasthenic Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The studies of A.M.J.M. v.d. M are supported by the Centre for Medical Systems Biology (CMSB) in the framework of the Netherlands Genomics Initiative (NGI).

References

  1. Ando M, Sawada K, Sakata-Haga H et al (2005) Regional difference in corticotropin-releasing factor immunoreactivity in mossy fiber terminals innervating calretinin-immunoreactive unipolar brush cells in vestibulocerebellum of rolling mouse Nagoya. Brain Res 1063:96–101PubMedCrossRefGoogle Scholar
  2. Austin MC, Schultzberg M, Abbott LC et al (1992) Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner mouse. Brain Res Mol Brain Res 15:227–240PubMedCrossRefGoogle Scholar
  3. Benarroch EE (2010) Neuronal voltage-gated calcium channels: brief overview of their function and clinical implications in neurology. Neurology 74:1310–1315PubMedCrossRefGoogle Scholar
  4. Bishop GA, Seelandt CM, King JS (2000) Cellular localization of corticotropin releasing factor receptors in the adult mouse cerebellum. Neuroscience 101:1083–1092PubMedCrossRefGoogle Scholar
  5. Brosenitsch TA, Katz DM (2001) Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels. J Neurosci 21:2571–2579PubMedGoogle Scholar
  6. Day NC, Wood SJ, Ince PG et al (1997) Differential localization of voltage-dependent calcium channel alpha1 subunits at the human and rat neuromuscular junction. J Neurosci 17:6226–6235PubMedGoogle Scholar
  7. Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19:237–244PubMedCrossRefGoogle Scholar
  8. Doyle J, Ren X, Lennon G et al (1997) Mutations in the Cacnl1a4 calcium channel gene are associated with seizures, cerebellar degeneration, and ataxia in tottering and leaner mutant mice. Mamm Genome 8:113–120PubMedCrossRefGoogle Scholar
  9. Ertel EA, Campbell KP, Harpold MM et al (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535PubMedCrossRefGoogle Scholar
  10. Felix R (2002) Insights from mouse models of absence epilepsy into Ca2+ channel physiology and disease etiology. Cell Mol Neurobiol 22:103–120PubMedCrossRefGoogle Scholar
  11. Fletcher CF, Lutz CM, O’Sullivan TN et al (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617PubMedCrossRefGoogle Scholar
  12. Fujii T, Sakai M, Nagatsu I (1994) Immunohistochemical demonstration of expression of tyrosine hydroxylase in cerebellar Purkinje cells of the human and mouse. Neurosci Lett 165:161–163PubMedCrossRefGoogle Scholar
  13. Fukumoto N, Obama Y, Kitamura N et al (2009) Hypoalgesic behaviors of P/Q-type voltage-gated Ca2+ channel mutant mouse, rolling mouse Nagoya. Neuroscience 160:165–173PubMedCrossRefGoogle Scholar
  14. Fureman BE, Campbell DB, Hess EJ (1999) L-type calcium channel regulation of abnormal tyrosine hydroxylase expression in cerebella of tottering mice. Ann N Y Acad Sci 868:217–219PubMedCrossRefGoogle Scholar
  15. Green MC, Sidman RL (1962) Tottering–a neuromuscular mutation in the mouse. And its linkage with oligosyndacylism. J Hered 53:233–237PubMedGoogle Scholar
  16. Hess EJ, Wilson MC (1991) Tottering and leaner mutations perturb transient developmental expression of tyrosine hydroxylase in embryologically distinct Purkinje cells. Neuron 6:123–132PubMedCrossRefGoogle Scholar
  17. Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  18. Hoebeek FE, Stahl JS, van Alphen AM et al (2005) Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 45:953–965PubMedCrossRefGoogle Scholar
  19. International Headache Society (2004) The International Classification of Headache Disorders: 2nd edition. Cephalalgia 24(Suppl 1):9–160Google Scholar
  20. Jen JC, Graves TD, Hess EJ et al (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130:2484–2493PubMedCrossRefGoogle Scholar
  21. Kaja S, van de Ven RC, Broos LA et al (2005) Gene dosage-dependent transmitter release changes at neuromuscular synapses of CACNA1A R192Q knock in mice are non-progressive and do not lead to morphological changes or muscle weakness. Neuroscience 135:81–95PubMedCrossRefGoogle Scholar
  22. Kaja S, Todorov B, van de Ven RC et al (2007a) Redundancy of Cav2.1 channel accessory subunits in transmitter release at the mouse neuromuscular junction. Brain Res 1143:92–101PubMedCrossRefGoogle Scholar
  23. Kaja S, van de Ven RC, Broos LA et al (2007b) Characterization of acetylcholine release and the compensatory contribution of non-Ca(v)2.1 channels at motor nerve terminals of leaner Ca(v)2.1-mutant mice. Neuroscience 144:1278–1287PubMedCrossRefGoogle Scholar
  24. Kaja S, van de Ven RC, van Dijk JG et al (2007c) Severely impaired neuromuscular synaptic transmission causes muscle weakness in the Cacna1a-mutant mouse rolling Nagoya. Eur J Neurosci 25:2009–2020PubMedCrossRefGoogle Scholar
  25. Kaja S, van de Ven RC, Broos LA et al (2010) Severe and progressive neurotransmitter release aberrations in familial hemiplegic migraine type 1 Cacna1a S218L knock-in mice. J Neurophysiol 104:1445–1455PubMedCrossRefGoogle Scholar
  26. Kanno T, Suga S, Nakano K et al (1999) Corticotropin-releasing factor modulation of Ca2+ influx in rat pancreatic beta-cells. Diabetes 48:1741–1746PubMedCrossRefGoogle Scholar
  27. Kato M, Hosokawa S, Tobimatsu S et al (1982) Increased local cerebral glucose utilization in the basal ganglia of the rolling mouse Nagoya. J Cereb Blood Flow Metab 2:385–393PubMedCrossRefGoogle Scholar
  28. Kinoshita K, Watanabe Y, Asai H et al (1995) Anti-ataxic effects of TRH and its analogue, TA-0910, in Rolling mouse Nagoya by metabolic normalization of the ventral tegmental area. Br J Pharmacol 116:3274–3278PubMedCrossRefGoogle Scholar
  29. Lambert EH, Elmqvist D (1971) Quantal components of end-plate potentials in the myasthenic syndrome. Ann N Y Acad Sci 183:183–199PubMedCrossRefGoogle Scholar
  30. Lennon VA, Kryzer TJ, Griesmann GE et al (1995) Calcium-channel antibodies in the Lambert-Eaton syndrome and other paraneoplastic syndromes. N Engl J Med 332:1467–1474PubMedCrossRefGoogle Scholar
  31. Lorenzoni PJ, Scola RH, Lang B et al (2008) Cerebellar ataxia in non-paraneoplastic Lambert-Eaton myasthenic syndrome. J Neurol Sci 270:194–196PubMedCrossRefGoogle Scholar
  32. Ludwig A, Flockerzi V, Hofmann F (1997) Regional expression and cellular localization of the alpha1 and beta subunit of high voltage-activated calcium channels in rat brain. J Neurosci 17:1339–1349PubMedGoogle Scholar
  33. Maselli RA, Kong DZ, Bowe CM et al (2001) Presynaptic congenital myasthenic syndrome due to quantal release deficiency. Neurology 57:279–289PubMedCrossRefGoogle Scholar
  34. Maselli RA, Wan J, Dunne V et al (2003) Presynaptic failure of neuromuscular transmission and synaptic remodeling in EA2. Neurology 61:1743–1748PubMedCrossRefGoogle Scholar
  35. Mason WP, Graus F, Lang B et al (1997) Small-cell lung cancer, paraneoplastic cerebellar degeneration and the Lambert-Eaton myasthenic syndrome. Brain 120:1279–1300PubMedCrossRefGoogle Scholar
  36. Matsushita K, Wakamori M, Rhyu IJ et al (2002) Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 22:4388–4398PubMedGoogle Scholar
  37. Miki T, Zwingman TA, Wakamori M et al (2008) Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies. Neuroscience 155:31–44PubMedCrossRefGoogle Scholar
  38. Mintz IM, Adams ME, Bean BP (1992) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95PubMedCrossRefGoogle Scholar
  39. Mintz IM, Sabatini BL, Regehr WG (1995) Calcium control of transmitter release at a cerebellar synapse. Neuron 15:675–688PubMedCrossRefGoogle Scholar
  40. Mori Y, Friedrich T, Kim MS et al (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402PubMedCrossRefGoogle Scholar
  41. Mori Y, Wakamori M, Oda S et al (2000) Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 20:5654–5662PubMedGoogle Scholar
  42. Muramoto O, Kanazawa I, Ando K (1981) Neurotransmitter abnormality in Rolling mouse Nagoya, an ataxic mutant mouse. Brain Res 215:295–304PubMedCrossRefGoogle Scholar
  43. Muramoto O, Ando K, Kanazawa I (1982) Central noradrenaline metabolism in cerebellar ataxic mice. Brain Res 237:387–395PubMedCrossRefGoogle Scholar
  44. Nakamura T, Honda M, Kimura S et al (2005) Taltirelin improves motor ataxia independently of monoamine levels in rolling mouse nagoya, a model of spinocerebellar atrophy. Biol Pharm Bull 28:2244–2247PubMedCrossRefGoogle Scholar
  45. Noebels JL (1984) Isolating single genes of the inherited epilepsies. Ann Neurol 16(Suppl):S18–S21PubMedCrossRefGoogle Scholar
  46. Oda S (1973) The observation of rolling mouse Nagoya (rol), a new neurological mutant, and its maintenance (author’s transl). Jikken Dobutsu 22:281–288PubMedGoogle Scholar
  47. Oda S (1981) A new allele of the tottering locus, rolling mouse Nagoya, on chromosome no. 8 in the mouse. Jpn J Genet 56:295–299CrossRefGoogle Scholar
  48. Oda S, Lee KJ, Arii T et al (2010) Differential regulation of Purkinje cell dendritic spines in rolling mouse Nagoya (tgrol/tgrol), P/Q type calcium channel (alpha1A/Cav2.1) mutant. Anat Cell Biol 43:211–217PubMedCrossRefGoogle Scholar
  49. Ogawa M (2004) Pharmacological treatments of cerebellar ataxia. Cerebellum 3:107–111PubMedCrossRefGoogle Scholar
  50. Ohba T, Takahashi E, Murakami M (2009) Modified autonomic regulation in mice with a P/Q-type calcium channel mutation. Biochem Biophys Res Commun 381:27–32PubMedCrossRefGoogle Scholar
  51. Onodera H, Takase S, Oda S et al (1988) Neurotransmitter receptors of the rolling mouse Nagoya: a quantitative autoradiographic study. Neurosci Res 5:316–324PubMedCrossRefGoogle Scholar
  52. Ophoff RA, Terwindt GM, Vergouwe MN et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552PubMedCrossRefGoogle Scholar
  53. Pietrobon D (2002) Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 25:31–50PubMedCrossRefGoogle Scholar
  54. Pietrobon D (2005) Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol 15:257–265PubMedCrossRefGoogle Scholar
  55. Plomp JJ, Vergouwe MN, Van Den Maagdenberg AM et al (2000) Abnormal transmitter release at neuromuscular junctions of mice carrying the tottering alpha(1A) Ca(2+) channel mutation. Brain 123:463–471PubMedCrossRefGoogle Scholar
  56. Plomp JJ, Van Den Maagdenberg AM, Kaja S (2009) The ataxic Cacna1a-mutant mouse rolling nagoya: an overview of neuromorphological and electrophysiological findings. Cerebellum 8:222–230PubMedCrossRefGoogle Scholar
  57. Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012PubMedGoogle Scholar
  58. Rhyu IJ, Oda S, Uhm CS et al (1999) Morphologic investigation of rolling mouse Nagoya (tg(rol)/tg(rol)) cerebellar Purkinje cells: an ataxic mutant, revisited. Neurosci Lett 266:49–52PubMedCrossRefGoogle Scholar
  59. Sawada K, Fukui Y (2001) Expression of tyrosine hydroxylase in cerebellar Purkinje cells of ataxic mutant mice: its relation to the onset and/or development of ataxia. J Med Invest 48:5–10PubMedGoogle Scholar
  60. Sawada K, Fukui Y (2010) Zebrin II expressing Purkinje cell phenotype-related and -unrelated cerebellar abnormalities in Cav2.1 mutant, rolling mouse Nagoya. ScientificWorldJournal 10:2032–2038PubMedCrossRefGoogle Scholar
  61. Sawada K, Komatsu S, Haga H et al (1999) Abnormal expression of tyrosine hydroxylase immunoreactivity in cerebellar cortex of ataxic mutant mice. Brain Res 829:107–112PubMedCrossRefGoogle Scholar
  62. Sawada K, Sakata-Haga H, Ando M et al (2001) An increased expression of Ca(2+) channel alpha(1A) subunit immunoreactivity in deep cerebellar neurons of rolling mouse Nagoya. Neurosci Lett 316:87–90PubMedCrossRefGoogle Scholar
  63. Sawada K, Kawano M, Tsuji H et al (2003) Over-expression of corticotropin-releasing factor mRNA in inferior olivary neurons of rolling mouse Nagoya. Brain Res Mol Brain Res 117:190–195PubMedCrossRefGoogle Scholar
  64. Sawada K, Ando M, Sakata-Haga H et al (2004) Abnormal expression of tyrosine hydroxylase not accompanied by phosphorylation at serine 40 in cerebellar Purkinje cells of ataxic mutant mice, rolling mouse Nagoya and dilute-lethal. Congenit Anom (Kyoto) 44:46–50CrossRefGoogle Scholar
  65. Sawada K, Hosoi E, Bando M et al (2008) Differential alterations in expressions of ryanodine receptor subtypes in cerebellar cortical neurons of an ataxic mutant, rolling mouse Nagoya. Neuroscience 152:609–617PubMedCrossRefGoogle Scholar
  66. Sawada K, Sakata-Haga H, Fukui Y (2010) Alternating array of tyrosine hydroxylase and heat shock protein 25 immunopositive Purkinje cell stripes in zebrin II-defined transverse zone of the cerebellum of rolling mouse Nagoya. Brain Res 1343:46–53PubMedCrossRefGoogle Scholar
  67. Soong BW, Paulson HL (2007) Spinocerebellar ataxias: an update. Curr Opin Neurol 20:438–446PubMedCrossRefGoogle Scholar
  68. Starr TV, Prystay W, Snutch TP (1991) Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 88:5621–5625PubMedCrossRefGoogle Scholar
  69. Suh YS, Oda S, Kang YH et al (2002) Apoptotic cell death of cerebellar granule cells in rolling mouse Nagoya. Neurosci Lett 325:1–4PubMedCrossRefGoogle Scholar
  70. Sutton KG, McRory JE, Guthrie H et al (1999) P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401:800–804PubMedCrossRefGoogle Scholar
  71. Takahashi E, Niimi K (2009) Spatial learning deficit in aged heterozygous Cav2.1 channel mutant mice, rolling mouse Nagoya. Exp Gerontol 44:274–279PubMedCrossRefGoogle Scholar
  72. Takahashi E, Niimi K, Itakura C (2009a) Age-related spatial and nonspatial short-term memory in Cav2.1alpha1 mutant mice, Rolling Nagoya. Behav Brain Res 204:241–245PubMedCrossRefGoogle Scholar
  73. Takahashi E, Niimi K, Itakura C (2009b) Motor coordination impairment in aged heterozygous rolling Nagoya, Cav2.1 mutant mice. Brain Res 1279:50–57PubMedCrossRefGoogle Scholar
  74. Takahashi E, Niimi K, Itakura C (2010) Neonatal motor functions in Cacna1a-mutant rolling Nagoya mice. Behav Brain Res 207:273–279PubMedCrossRefGoogle Scholar
  75. Tamaki Y, Oda S, Kameyama Y (1986) Postnatal locomotion development in a neurological mutant of rolling mouse Nagoya. Dev Psychobiol 19:67–77PubMedCrossRefGoogle Scholar
  76. Taniwaki T, Shinoda H, Kaseda Y et al (1996) Increased preproenkephalin mRNA and preprotachykinin mRNA in the striatum of Rolling mouse Nagoya. Brain Res 714:231–234PubMedCrossRefGoogle Scholar
  77. Titulaer MJ, Wirtz PW, Kuks JB et al (2008) The Lambert-Eaton myasthenic syndrome 1988–2008: a clinical picture in 97 patients. J Neuroimmunol 201–202:153–158PubMedCrossRefGoogle Scholar
  78. Tomoda H, Kato M, Sakata S et al (1992) Striatal dysfunction in Rolling mouse Nagoya: an electrophysiological study. J Neurol Sci 112:106–112PubMedCrossRefGoogle Scholar
  79. Uchitel OD, Protti DA, Sanchez V et al (1992) P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci USA 89:3330–3333PubMedCrossRefGoogle Scholar
  80. Van Den Maagdenberg AM, Pietrobon D, Pizzorusso T et al (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41:701–710PubMedCrossRefGoogle Scholar
  81. Van Den Maagdenberg AM, Haan J, Terwindt GM et al (2007) Migraine: gene mutations and functional consequences. Curr Opin Neurol 20:299–305PubMedCrossRefGoogle Scholar
  82. Van Den Maagdenberg AM, Pizzorusso T, Kaja S et al (2010) High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol 67:85–98PubMedCrossRefGoogle Scholar
  83. Walter JT, Alvina K, Womack MD et al (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9:389–397PubMedCrossRefGoogle Scholar
  84. Watanabe M (2008) Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. Tohoku J Exp Med 214:175–190PubMedCrossRefGoogle Scholar
  85. Westenbroek RE, Sakurai T, Elliott EM et al (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418PubMedGoogle Scholar
  86. Westenbroek RE, Hoskins L, Catterall WA (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci 18:6319–6330PubMedGoogle Scholar
  87. Xie G, Clapcote SJ, Nieman BJ et al (2007) Forward genetic screen of mouse reveals dominant missense mutation in the P/Q-type voltage-dependent calcium channel, CACNA1A. Genes Brain Behav 6:717–727PubMedCrossRefGoogle Scholar
  88. Zhuchenko O, Bailey J, Bonnen P et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69PubMedCrossRefGoogle Scholar
  89. Zwingman TA, Neumann PE, Noebels JL et al (2001) Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 21:1169–1178PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jaap J. Plomp
    • 1
  • Arn M. J. M. van den Maagdenberg
    • 2
  1. 1.Departments of Neurology and Molecular Cell Biology – Group NeurophysiologyLeiden University Medical CentreLeidenThe Netherlands
  2. 2.Departments of Neurology and Human GeneticsLeiden University Medical CentreLeidenThe Netherlands

Personalised recommendations