Encyclopedia of Food and Agricultural Ethics

2014 Edition
| Editors: Paul B. Thompson, David M. Kaplan

Nanotechnology in Agriculture

  • Anne Ingeborg Myhr
  • Bjørn Kåre Myskja
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-0929-4_229


Agriculture; Ethics; Food science; Nanotechnology; Risk; Socio-economics


Climate change and increased global population give rise to a special emphasis on how agriculture can expand production under changing conditions. Agriculture has also seen radical changes the last century with a turn towards research-based, industrialized agriculture with large-scale monocultures, mechanization, increased irrigation, use of artificial fertilizers, and pest control systems, combined with a change from local towards export-oriented making of products to be used for food, feed, fuel, and fiber. Biotechnology-based interventions such as systematic breeding, as witnessed in the Green Revolution, and genetic modification have led to commercially successful but politically controversial herbicide-tolerant and pest-resilient varieties of major crops, with promises of a wide range of new varieties in the years to come. In recent years nanotechnology methods and products have been...

This is a preview of subscription content, log in to check access.


  1. Baruah, S., & Dutta, J. (2009). Nanotechnology applications in pollution sensing and degradation in agriculture: A review. Environmental Chemistry Letters, 7, 191–204. doi:10.1007/s10311-009-0228-8.CrossRefGoogle Scholar
  2. Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science & Technology, 22, 585–594. doi:10.1016/j.tifs.2011.09.004.CrossRefGoogle Scholar
  3. Duvall, M. N., Wyatt, A. M., & Yeung, F. S. (2011). Navigating FDA’s approach to approval of nanoparticle-based drugs and devices. Nanotechnology Law & Business, 8(4), 226–245.Google Scholar
  4. Evers, J., Aerts, S., & De Tavernier, J. (2008). An ethical argument in favor of nano-enabled diagnostics in livestock disease control. Nanoethics, 2, 163–178. doi:10.1007/s11569-008-0034-y.CrossRefGoogle Scholar
  5. FAO & WHO. (2010). FAO/WHO expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications. http://www.fao.org/docrep/012/i1434e/i1434e00.pdf. Accessed 31 Jan 2013.
  6. Farhang, B. (2007). Nanotechnology and lipids. Lipid Technology, 19, 132–135. doi:10.1002/lite.200700045.CrossRefGoogle Scholar
  7. Grieger, K. D., Hansen, S., & Baun, A. (2009). The known unknowns of nanomaterials: Describing and characterising uncertainty within environmental, health and safety risks. Nanotoxicology, 3, 222–233.CrossRefGoogle Scholar
  8. Lin, P. (2007). Nanotechnology bound: Evaluating the case for more regulation. Nanoethics, 1, 105–122. doi:10.1007/s11569-007-0012-9.CrossRefGoogle Scholar
  9. Lü, J., Wang, X., Marin-Muller, C., Wang, H., Lin, P. H., Yao, Q., & Chen, C. (2009). Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Review of Molecular Diagnostics, 9, 325–341. doi:10.1586/erm.09.15.CrossRefGoogle Scholar
  10. Myhr, A. I., & Myskja, B. K. (2011). Precaution or integrated responsibility approach to nanovaccines in fish farming? A critical appraisal of the UNESCO precautionary principle. Nanoethics, 5, 73–86. doi:10.1007/s11569-011-0112-4.CrossRefGoogle Scholar
  11. Nanoforum. (2006). Nanoforum report: Nanotechnology in agriculture and food. ftp://ftp.cordis.europa.eu/pub/nanotechnology/docs/nanotechnology_in_agriculture_and_food.pdf. Accessed 31 Jan 2013.
  12. Nordmann, A. (2007). If and then: A critique of speculative nanoethics. Nanoethics, 1, 31–46. doi:10.1007/s11569-007-0007-.CrossRefGoogle Scholar
  13. Olesen, I., Myhr, A. I., & Rosendal, K. (2010). Sustainable aquaculture: are we getting there? Ethical perspectives on salmon farming. Journal of Agricultural and Environmental Ethics, 24, 381–408. doi:10.1007/s10806-010-9269-z.CrossRefGoogle Scholar
  14. Panda, A. K. (2012). Nanotechnology in vaccine development. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 82, 13–27.CrossRefGoogle Scholar
  15. Scrinis, G., & Lyons, K. (2007). The emerging nano-corporate paradigm: Nanotechnology and the transformation of nature, food and agri-food systems. International Journal for the Sociology of Agriculture and Food, 5, 22–44. ISSN: 0798–1759.Google Scholar
  16. Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27, 82–89. doi:10.1016/j.tibtech.2008.10.010.CrossRefGoogle Scholar
  17. Sozer, N., & Kokini, J. L. (2012). The applications of nanotechnology. In Y. Picó (Ed.), Chemical analysis of food: Techniques and applications (pp. 145–170). USA: Elsevier. doi:10.1016/B978-0-12-384862-8.00006-6.Google Scholar
  18. The Royal Society & The Royal Academy of Engineering. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties. London: Royal Society.Google Scholar
  19. Wullweber, J. (2008). Nanotechnology – an empty signifier á venir? A delineation of a techno-socio-economical innovation strategy. Science, Technology & Innovation Studies, 4, 27–45. ISSN: 1861–3675.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.GenØk-Centre of BiosafetyTromsøNorway
  2. 2.Department of Philosophy and Religious StudiesNorwegian University of Science and TechnologyTrondheimNorway