Encyclopedia of Quality of Life and Well-Being Research

2014 Edition
| Editors: Alex C. Michalos

Power Analysis

  • Manuel VoelkleEmail author
  • Edgar Erdfelder
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-0753-5_2230



The power of a statistical hypothesis test is the probability of rejecting the  null hypothesis given that the null hypothesis is in fact false.


There are four possible outcomes of a statistical hypothesis test: (1) the null hypothesis is maintained given that it is in fact true (a true negative decision); (2) the null hypothesis is rejected even though it is true (a false positive decision or  type I error); (3) the null hypothesis is maintained even though it is false (a false negative decision or  type II error); and (4) the null hypothesis is rejected given that it is in fact false (a true positive decision). The probabilities of type I and type II errors are often denoted by the Greek letters α and β, respectively. Accordingly, the power (also referred to as the  sensitivityof a test) is (1-β), whereas (1-α) denotes the probability of a true negative decision (also referred to as the...

This is a preview of subscription content, log in to check access.


  1. American Psychological Association. (2001). Publication manual of the American Psychological Association (5th ed.). Washington, DC: Author.Google Scholar
  2. Berger, M. P. F., & Wong, W. K. (2009). An introduction to optimal design for social and biomedical research. Chichester: Wiley.Google Scholar
  3. Champely, S. (2012). pwr: Basic functions for power analysis. (Version R package version 1.1.1). Retrieved January 12, 2013, from http://CRAN.R-project.org/package=pwr
  4. Cohen, J. (1962). The statistical power of abnormal-social psychological research. Journal of Abnormal and Social Psychology, 65, 145–153.Google Scholar
  5. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  6. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.Google Scholar
  7. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Hillsdale: Erlbaum.Google Scholar
  8. Erdfelder, E., Faul, F., Buchner, A., & Cüpper, L. (2010). Effektgröße und Teststärke. In H. Holling & B. Schmitz (Eds.), Handbuch der Psychologischen Methoden und Evaluation (pp 358–369). Göttingen: Hogrefe.Google Scholar
  9. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.Google Scholar
  10. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.Google Scholar
  11. Hoenig, J. M., & Heisey, D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis. The American Statistician, 55, 19–24.Google Scholar
  12. Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods, 9, 147–163.Google Scholar
  13. Maxwell, S. E., & Delaney, H. D. (2000). Designing experiments and analyzing data: A model comparison perspective. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  14. Onwuegbuzie, A. J., & Leech, N. L. (2004). Post hoc power: A concept whose time has come. Understanding Statistics, 3, 201–230.Google Scholar
  15. Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies. Psychological Bulletin, 105, 309–316.Google Scholar
  16. von Oertzen, T. (2010). Power equivalence in structural equation modelling. British Journal of Mathematical and Statistical Psychology, 63, 257–272. doi:10.1348/000711009X441021.Google Scholar
  17. von Oertzen, T., Hertzog, C., Lindenberger, U., & Ghisletta, P. (2010). The effect of multiple indicators on the power to detect inter-individual differences in change. British Journal of Mathematical and Statistical Psychology, 63, 627–646. doi:10.1348/000711010x486633.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Max Planck Institute for Human DevelopmentBerlinGermany
  2. 2.Lehrstuhl Psychologie IIIUniversität MannheimMannheimGermany