Directions for Use of Density Functional Theory: A Short Instruction Manual for Chemists

  • Heiko Jacobsen
  • Luigi Cavallo
Reference work entry

Abstract

Two aspects are quintessential if one seeks to successfully perform DFT calculations: A basic understanding of how the concepts and models underlying the various manifestations of DFT are built, and an essential knowledge of what can be expected from DFT calculations and how to achieve the most appropriate results. This chapter expands on the development and philosophy of DFT, and aims to illustrate the essentials of DFT in a manner that is intuitively accessible. An analysis of the performance and applicability of DFT focuses on a representative selection of chemical properties, including bond lengths, bond angles, vibrational frequencies, electron affinities and ionization potentials, atomization energies, heats of formation, energy barriers, bond energies hydrogen bonding, weak interactions, spin states, and excited states.

Keywords

Density Functional Theory Density Functional Theory Calculation Generalize Gradient Approximation Local Density Approximation Ground State Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

Books on DFT

  1. Fiolhais, C., Nogueira, F., & Marques, M. (2003). A primer in density functional theory, Lecture notes in physics. Berlin: Springer.CrossRefGoogle Scholar
  2. Koch, W., & Holthausen, M. C. (2002). A chemist’s guide to density functional theory (2nd ed.). Weinheim: Wiley-VCH.Google Scholar
  3. Marques, M. A. L., Ullrich, C. A., Nogueira, F., Rubio, A., Burke, K., & Gross, E. K. U. (2006). Time-dependent density functional theory, Lecture notes in physics. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  4. Parr, R. G., & Yang, W. (1989). Density functional theory of atoms and molecules. New York: Oxford University Press.Google Scholar

Conceptual Developments and Applications of DFT

  1. Baerends, E. J., & Ros, P. (1978). Evaluation of the LCAO Hartree-Fock-Slater method – Applications to transition-metal complexes. International Journal of Quantum Chemistry, 12, 169–190.Google Scholar
  2. Baerends, E. J., Ellis, D. E., & Ros, P. (1973). Self-consistent molecular Hartree-Fock-Slater calculations – I. The computational procedure. Chemical Physics, 2, 41–47.CrossRefGoogle Scholar
  3. Bartlett, R. J., Lotrich, V. F., & Schweigert, I. V. (2005). Ab initio density functional theory: The best of both worlds? Journal of Chemical Physics, 123, 062205.CrossRefGoogle Scholar
  4. Becke, A. D. (1988a). A multicenter numerical-integration scheme for polyaromic molecules. Journal of Chemical Physics, 88, 2547–2553.CrossRefGoogle Scholar
  5. Becke, A. D. (1988b). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100.CrossRefGoogle Scholar
  6. Becke, A. D. (1993a). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Physical Chemistry, 98, 1372–1377.CrossRefGoogle Scholar
  7. Becke, A. D. (1993b). Density-functional thermochemistry: 3. The role of exact exchange. The Journal of Physical Chemistry, 98, 5648–5652.CrossRefGoogle Scholar
  8. Becke, A. D., & Roussel, M. R. (1989). Exchange holes in inhomogeneous systems – a coordinate-space model. Physical Review A, 98, 1372–1377.Google Scholar
  9. Boerrigter, P. M., te Velde, G., & Baerends, E. J. (1988). 3-dimensional numerical-integtation for electronic-structure calculations. International Journal of Quantum Chemistry, 33, 87–113.CrossRefGoogle Scholar
  10. Gill, P. M. W. (2001). Obituary: Density functional theory (1927–1993). Australian Journal of Chemistry, 54, 661–662.CrossRefGoogle Scholar
  11. Grimme, S. (2006). Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. Angewandte Chemie International Edition, 45, 4460–4464.CrossRefGoogle Scholar
  12. Hertwig, R. H., & Koch, W. (1997). On the parameterization of the local correlation functional. What is Becke-3-LYP? Chemical Physics Letters, 268, 345–351.CrossRefGoogle Scholar
  13. Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, B646–B871.CrossRefGoogle Scholar
  14. Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133–A1138.CrossRefGoogle Scholar
  15. Kurth, S., & Perdew, J. P. (2000). Role of the exchange-correlation energy: Nature’s glue. International Journal of Quantum Chemistry, 77, 814–818.CrossRefGoogle Scholar
  16. Perdew, J. P. (1986). Density-functional approximation for the correlation-energy of the inhomogeneous electron gas. Physical Review B, 33, 8822–8824.CrossRefGoogle Scholar
  17. Perdew, J. P., & Schmidt, K. (2001). Jacob’s ladder of density functional approximations for the exchange-correlation energy. In V. V. Doren, P. Geerlings, & C. V. Alsenoy (Eds.), Density functional theory and its applications to materials (pp. 1–20). Melville: AIP.Google Scholar
  18. Slater, J. C. (1951). A simplification of the Hartree-Fock method. Physcial Review, 81, 385–390.CrossRefGoogle Scholar
  19. Tao, J. M., Perdew, J. P., Staroverov, V. N., & Scuseria, G. E. (2003). Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91, 146401.CrossRefGoogle Scholar
  20. Versluis, L., & Ziegler, T. (1988). The determination of molecular structures by density functional theory: The evaluation of analytical energy gradients by numerical integration. Journal of Chemical Physics, 88, 322–328.CrossRefGoogle Scholar
  21. Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Canadian Journal of Physics, 58, 1200–1211.CrossRefGoogle Scholar
  22. Zope, R. R., & Dunlap, B. I. (2006). The limitations of Slater’s element-dependent exchange functional from analytic density-functional theory. Journal of Chemical Physics, 124, 044107.CrossRefGoogle Scholar

Practical Developments and Applications of DFT

  1. Barden, C. J., Rienstra-Kiracofe, J. C., & Schaefer, H. F. (2000). Homonuclear 3d transition-metal diatomics: A systematic density functional theory study. Journal of Chemical Physics, 113, 690–700.CrossRefGoogle Scholar
  2. Curtiss, L. A., Raghavachari, K., Redfern, P. C., & Pople, J. A. (1997). Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. Journal of Chemical Physics, 106, 1063–1079.CrossRefGoogle Scholar
  3. Curtiss, L. A., Raghavachari, K., Redfern, P. C., & Pople, J. A. (2000). Assessment of Gaussian-3 and density functional theories for a larger experimental test set. Journal of Chemical Physics, 112, 7374–7383.CrossRefGoogle Scholar
  4. Ghosh, A. (2006). Transition metal spin state energetics and noninnocent systems: Challenges for DFT in the bioinorganic arena. Journal of Biological Inorganic Chemistry, 11, 712–714.CrossRefGoogle Scholar
  5. Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799.CrossRefGoogle Scholar
  6. Güell, M., Luis, J. M., Solá, M., & Swart, M. (2008). Importance of the basis set for the spin-state energetics of iron complexes. The Journal of Physical Chemistry A, 112, 6384–6391.CrossRefGoogle Scholar
  7. Holland, J. P., & Green, J. C. (2010). Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes. Journal of Computational Chemistry, 31, 1008–1014.Google Scholar
  8. Jacquemin, D., Perpete, E. A., Scuseria, G. E., Ciofini, I., & Adamo, C. (2008). TD-DFT performance for the visible absorption spectra of organic dyes: Conventional versus long-range hybrids. Journal of Chemical Theory and Computation, 4, 123–135.CrossRefGoogle Scholar
  9. Kelly, R. A., Clavier, H., Giudice, S., Scott, N. M., Stevens, E. D., Bordner, J., Samardjiev, I., Hoff, C. D., Cavallo, L., & Nolan, S. P. (2008). Determination of N-heterocyclic carbene (NHC) steric and electronic parameters using the [(NHC)Ir(CO)(2)Cl] system. Organometallics, 27, 202–210.CrossRefGoogle Scholar
  10. Korth, M., & Grimme, S. (2009). “Mindless” DFT Benchmarking. Journal of Chemical Theory and Computation, 5, 993–1003.CrossRefGoogle Scholar
  11. Lynch, B. J., & Truhlar, D. G. (2003). Small representative benchmarks for thermochemical calculations. The Journal of Physical Chemistry A, 107, 8996–8999.CrossRefGoogle Scholar
  12. Pierloot, K., & Vancoillie, S. J. (2008). Relative energy of the high-(T-5(2g)) and low-((1)A(1g)) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. Journal of Chemical Physics, 128, 034104.CrossRefGoogle Scholar
  13. Reiher, M., Salomon, O., & Hess, B. A. (2001). Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theoretical Chemistry Accounts, 107, 48–55.CrossRefGoogle Scholar
  14. Riley, K. E., Op’t Holt, B. T., & Merz, K. M., Jr., (2007). Critical assessment of the performance of density functional methods for several atomic and molecular properties. Journal of Chemical Theory and Computation, 3, 407–433.CrossRefGoogle Scholar
  15. Schultz, N. E., Zhao, Y., & Truhlar, D. G. (2005a). Density functionals for inorganometallic and organometallic chemistry. The Journal of Physical Chemistry A, 109, 11127–11143.CrossRefGoogle Scholar
  16. Schultz, N. E., Zhao, Y., & Truhlar, D. G. (2005b). Databases for transition element bonding: Metal-metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. The Journal of Physical Chemistry A, 109, 4388–4403.CrossRefGoogle Scholar
  17. Sorkin, A., Iron, M. A., & Truhlar, D. G. (2008). Density functional theory in transition-metal chemistry: Relative energies of low-lying states of iron compounds and the effect of spatial symmetry breaking. Journal of Chemical Theory and Computation, 4, 307–315.CrossRefGoogle Scholar
  18. Sponer, J., Jurecka, P., & Hobza, P. (2004). Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. Journal of the American Chemical Society, 126, 10142–10151.CrossRefGoogle Scholar
  19. Stevens, A. E., Feigerle, C. S., & Lineberger, W. C. (1982). Journal of the American Chemical Society, 104, 5026.CrossRefGoogle Scholar
  20. Stowasser, R., & Hoffmann, R. (1999). What do the Kohn-Sham orbitals and eigenvalues mean? Journal of the American Chemical Society, 121, 3414–3420.CrossRefGoogle Scholar
  21. Swart, M. (2008). Accurate spin-state energies for iron complexes. Journal of Chemical Theory and Computation, 4, 2057–2066.CrossRefGoogle Scholar
  22. Wang, N. X., & Wilson, A. K. (2004). The behavior of density functionals with respect to basis set. I. The correlation consistent basis sets. Journal of Chemical Physics, 121, 7632–7646.CrossRefGoogle Scholar
  23. Wodrich, M. D., Corminboeuf, C., & Schleyer, P. v. R. (2006). Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Organic Letters, 8, 3631–3634.CrossRefGoogle Scholar
  24. Yang, W. T. (1991). Direct calculation of electron density in density functional theory. Physical Review Letters, 66, 1438–1441.CrossRefGoogle Scholar
  25. Zhao, Y., & Truhlar, D. G. (2004). Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. The Journal of Physical Chemistry A, 108, 6908–6918.CrossRefGoogle Scholar
  26. Zhao, Y., & Truhlar, D. G. (2005a). Benchmark databases for nonbonded interactions and their use to test density functional theory. Journal of Chemical Theory and Computation, 1, 415–432.CrossRefGoogle Scholar
  27. Zhao, Y., & Truhlar, D. G. (2005b). Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. The Journal of Physical Chemistry A, 109, 5656–5667.CrossRefGoogle Scholar
  28. Zhao, Y., & Truhlar, D. G. (2005c). How well can new-generation density functional methods describe stacking interactions in biological systems? Physical Chemistry Chemical Physics, 7, 2701–2705.CrossRefGoogle Scholar
  29. Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.CrossRefGoogle Scholar
  30. Zhao, Y., Pu, J., Lynch, B. J., & Truhlar, D. G. (2004). Tests of second-generation and third-generation density functionals for thermochemical kinetics. Physical Chemistry Chemical Physics, 6, 673–676.CrossRefGoogle Scholar
  31. Zhao, Y., Gonzalez-Garcia, N., & Truhlar, D. G. (2005). Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. The Journal of Physical Chemistry A, 109, 2012–2018.CrossRefGoogle Scholar
  32. Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382.CrossRefGoogle Scholar
  33. Zhou, M., Andrews, L., & Bauschlicher, C. (2001). Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chemical Reviews, 101, 1931–1961.CrossRefGoogle Scholar

Reviews and Overviews of DFT

  1. Baerends, E. J., & Gritsenko, O. V. (1997). A quantum chemical view of density functional theory. The Journal of Physical Chemistry A, 101, 5383–5403.CrossRefGoogle Scholar
  2. Cramer, C. J., & Truhlar, D. G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 11, 10757–10816.CrossRefGoogle Scholar
  3. Geerlings, P., De Proft, F., & Langenaeker, L. (2003). Conceptual density functional theory. Chemical Review, 103, 1793–1873.CrossRefGoogle Scholar
  4. Kohn, W., Becke, A. D., and Parr, R. G. (1996). Density functional theory of electronic structure. The Journal of Physical Chemistry, 100, 12974–12980.CrossRefGoogle Scholar
  5. Lewis, K. E., Golden, D. M., & Smith, G. P. (1984). Journal of the American Chemical Society, 106, 3905.CrossRefGoogle Scholar
  6. Neese, F. (2009). Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling. Coordination Chemistry Reviews, 253, 526–563.CrossRefGoogle Scholar
  7. Perdew, J. P., Ruzsinszky, A., Constantin, L. A., Sun, J. W., & Csonka, G. I. (2009). Some fundamental issues in ground-state density functional theory: A guide for the perplexed. Journal of Chemical Theory and Computation, 5, 902–908.CrossRefGoogle Scholar
  8. Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2007). General performance of density functionals. The Journal of Physical Chemistry A, 111, 10439–10452.CrossRefGoogle Scholar
  9. Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41, 157–167.CrossRefGoogle Scholar
  10. Ziegler, T. (1991). Approximate density functional theory as practical tool in molecular energetics and dynamics. Chemical Review, 91, 651–667.CrossRefGoogle Scholar
  11. Ziegler, T. (1995). Density functional theory as practical tool in studies of organometallic energetics and kinetics. Beating the heavy metal blues with DFT. Canadian Journal of Chemistry, 73, 743–761.CrossRefGoogle Scholar

Web Links

  1. ADF. (2010). Amsterdam density functional software. http://www.scm.com/. Accessed 12 Mar 2010.
  2. Burke, K. (2010). More basics of DFT. http://dft.uci.edu/materials/tutorialsAPS08/tutorialKB.pdf. Accessed 10 Mar 2010.
  3. Kroto, H. (2010). Autobiography. http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/kroto-autobio.html. Accessed 01 Mar 2010.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Heiko Jacobsen
    • 1
  • Luigi Cavallo
    • 1
  1. 1.KemKomNew OrleansUSA

Personalised recommendations