Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures: Graphene, Fullerenes, Carbon Nanotubes, and Their Derivatives

  • Tandabany C. Dinadayalane
  • Jerzy Leszczynski
Reference work entry

Abstract

This chapter provides information on various carbon allotropes, and in-depth details of structures, electronic and chemical properties of graphene, fullerenes, and single-walled carbon nanotubes (SWCNTs). We have given an overview of different computational methods that were employed to understand various properties of carbon nanostructures. Importance of application of computational methods in exploring different sizes of fullerenes and their isomers is given. The concept of isolated pentagon rule (IRP) in fullerene chemistry has been revealed. The computational and experimental studies involving Stone–Wales (SW) and vacancy defects in fullerene structures are discussed in this chapter. The relationship between the local curvature and the reactivity of the defect-free and defective fullerene and single-walled carbon nanotubes has been revealed. We reviewed the influence of different defects in graphene on hydrogen addition. The viability of hydrogen and fluorine atom additions on the external surface of the SWCNTs is revealed using computational techniques. We have briefly pointed out the current utilization of carbon nanostructures and their potential applications.

Keywords

Graphene Sheet Carbon Nanostructures High Fullerene Defect Formation Energy Chemisorption Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the High Performance Computational Design of Novel Materials (HPCDNM) Project funded by the Department of Defense (DoD) through the U.S. Army/Engineer Research and Development Center (Vicksburg, MS); Contract # W912HZ-06-C-0057 and by the Office of Naval Research (ONR) grant 08PRO2615-00/N00014-08-1-0324. We also acknowledge the support from National Science Foundation (NSF) for Interdisciplinary Center for Nanotoxicity (ICN) through CREST grant HRD-0833178.

References

  1. Abanin, D. A., Lee, P. A., & Levitov, L. S. (2006). Spin-filtered edge states and quantum hall effect in graphene. Physical Review Letters, 96, 176803-1–176803-4.Google Scholar
  2. Achiba, Y., Kikuchi, K., Aihara, Y., Wakabayashi, Y., Miyake, Y., & Kainosho, M. (1995). In P. Bernier, D. S. Bethune, L. Y. Chiang, T. W. Ebbesen, R. M. Metzger, & J. W. Mintmire (Eds.), Higher fullerenes: Structure and properties (Materials research society symposium proceedings, Vol. 359, p. 3). Pittsburgh, PA: Materials Research Society.Google Scholar
  3. Achiba, Y., Kikuchi, K., Aihara, Y., Wakabayashi, T., Miyake, Y., & Kainosho, M. (1996). In W. Andreoni (Ed.), The chemical physics of fullerenes, 10 and 5 years later (p. 139). Dordrecht: Kluwer.Google Scholar
  4. Akdim, B., Kar, T., Duan, X., & Pachter, R. (2007). Density functional theory calculations of ozone adsorption on sidewall single-wall carbon nanotubes with Stone-Wales defects. Chemical Physics Letters, 445, 281–287.Google Scholar
  5. Amorim, R. G., Fazzio, A., Antonelli, A., Novaes, F. D., & da Silva, A. J. R. (2007). Divacancies in graphene and carbon nanotubes. Nano Letters, 7, 2459–2462.Google Scholar
  6. Amsharov, K. Y., & Jensen, M. (2008). A C78 Fullerene precursor: Toward the direct synthesis of higher fullerenes. Journal of Organic Chemistry, 73, 2931–2934.Google Scholar
  7. An, W., Gao, Y., Bulusu, S., & Zeng, X. C. (2005). Ab initio calculation of bowl, cage, and ring isomers of C20 and \({\mathrm{C}}_{20}^{-}\). Journal of Chemical Physics, 122, 204109-1–204109-8.Google Scholar
  8. Andzelm, J., Govind, N., & Maiti, A. (2006). Nanotube-based gas sensors – Role of structural defects. Chemical Physics Letters, 421, 58–62.Google Scholar
  9. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I., & Hersam, M. C. (2006). Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology, 1, 60–65.Google Scholar
  10. Austin, S. J., Fowler, P. W., Manolopoulos, D. E., & Zerbetto, F. (1995). The Stone-Wales map for C60. Chemical Physics Letters, 235, 146–151.Google Scholar
  11. Avila, A. F., & Lacerda, G. S. R. (2008). Molecular mechanics applied to single-walled carbon nanotubes. Materials Research, 11, 325–333.Google Scholar
  12. Avouris, P., Chen, Z. H., & Perebeinos, V. (2007). Carbon-based electronics. Nature Nanotechnology, 2, 605–615.Google Scholar
  13. Bakry, R., Vallant, R. M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C. W., & Bonn, G. K. (2007). Medicinal applications of fullerenes. International Journal of Nanomedicine, 2, 639–649.Google Scholar
  14. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907.Google Scholar
  15. Barth, W. E., & Lawton, R. G. (1966). Dibenzo[ghi, mno]fluoranthene. Journal of the American Chemical Society, 88, 380–381.Google Scholar
  16. Baughman, R. H., Zakhidov, A. A., & de Heer, W. A. (2002). Carbon nanotubes-the route toward applications. Science, 297, 787–792.Google Scholar
  17. Beavers, C. M., Zuo, T., Duchamp, J. C., Harich, K., Dorn, H. C., Olmstead, M. M., & Balch, A. L. (2006). Tb3N@C84: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. Journal of the American Chemical Society, 128, 11352–11353.Google Scholar
  18. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652.Google Scholar
  19. Becker, L., Bada, J. L., Winans, R. E., Hunt, J. E., Bunch, T. E., & French, B. M. (1994). Fullerenes in the 1.85-billion-year-old Sudbury impact structure. Science, 265, 642–645.Google Scholar
  20. Berthe, M., Yoshida, S., Ebine, Y., Kanazawa, K., Okada, A., Taninaka, A., Takeuchi, O., Fukui, N., Shinohara, H., Suzuki, S., Sumitomo, K., Kobayashi, Y., Grandidier, B., Stievenard, D., & Shigekawa, H. (2007). Reversible defect engineering of single-walled carbon nanotubes using scanning tunneling microscopy. Nano Letters, 7, 3623–3627.Google Scholar
  21. Bethune, D. S., Klang, C.-H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605–607.Google Scholar
  22. Bettinger, H. F. (2004). Effects of finite carbon nanotube length on sidewall addition of fluorine atom and methylene. Organic Letters, 6, 731–734.Google Scholar
  23. Bettinger, H. F. (2005). The reactivity of defects at the sidewalls of single-walled carbon nanotubes: The Stone-Wales defect. The Journal of Physical Chemistry. B, 109, 6922–6924.Google Scholar
  24. Bettinger, H. F. (2006). Addition of carbenes to the sidewalls of single-walled carbon nanotubes. Chemistry - A European Journal, 12, 4372–4379.Google Scholar
  25. Bettinger, H. F., Yakobson, B. I., & Scuseria, G. E. (2003). Scratching the surface of Buckminsterfullerene: The barriers for Stone-Wales transformation through symmetric and asymmetric transition states. Journal of the American Chemical Society, 125, 5572–5580. and references therein.Google Scholar
  26. Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., & Novoselov, K. S. (2008). Graphene-based liquid crystal device. Nano Letters, 8, 1704–1708.Google Scholar
  27. Bosi, S., Ros, T. D., Spalluto, G., Balzarini, J., & Pratoa, M. (2003). Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 13, 4437–4440.Google Scholar
  28. Boukhvalov, D. W., & Katsnelson, M. I. (2008). Chemical functionalization of graphene with defects. Nano Letters, 8, 4373–4379.Google Scholar
  29. Boukhvalov, D. W., Katsnelson, M. I., & Lichtenstein, A. I. (2008). Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B, 77, 035427-1–035427-7.Google Scholar
  30. Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from graphene sheets. Science, 315, 490–493.Google Scholar
  31. Burda, C., Samia, A. C. S., Hathcock, D. J., Huang, H., & Yang, S. (2002). Experimental evidence for the photoisomerization of higher fullerenes. Journal of the American Chemical Society, 124, 12400–12401.Google Scholar
  32. Buseck, P. R., Tsipursky, S. J., & Hettich, R. (1992). Fullerenes from the geological environment. Science, 257, 215–217.Google Scholar
  33. Cabrera-Sanfelix, P., & Darling, G. R. (2007). Dissociative adsorption of water at vacancy defects in graphite. The Journal of Physical Chemistry C, 111, 18258–18263.Google Scholar
  34. Calaminici, P., Geudtner, G., & Koster, A. M. (2009). First-principle calculations of large fullerenes. Journal of Chemical Theory and Computation, 5, 29–32.Google Scholar
  35. Carlson, J. M., & Scheffler, M. (2006). Structural, electronic, and chemical properties of nanoporous carbon. Physical Review Letters, 96, 046806-1–046806-4.Google Scholar
  36. Carpio, A., Bonilla, L. L., de Juan, F., & Vozmediano, M. A. H. (2008). Dislocations in graphene. New Journal of Physics, 10, 053021-1–053021-13.Google Scholar
  37. Chakraborty, A. K., Woolley, R. A. J., Butenko, Y. V., Dhanak, V. R., Siller, L., & Hunt, M. R. C. (2007). A photoelectron spectroscopy study of ion-irradiation induced defects in single-wall carbon nanotubes. Carbon, 45, 2744–2750.Google Scholar
  38. Chandra, N., Namilae, S., & Shet, C. (2004). Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B, 69, 094101-1–094101-12.Google Scholar
  39. Charlier, J.-C. (2002). Defects in carbon nanotubes. Accounts of Chemical Research, 35, 1063–1069.Google Scholar
  40. Charlier, J.-C., Ebbesen, T. W., & Lambin, Ph. (1996). Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Physical Review B, 53, 11108–11113.Google Scholar
  41. Chaur, M. N., Valencia, R., Rodríguez-Fortea, A., Poblet, J. M., & Echegoyen, L. (2009a). Trimetallic nitride endohedral fullerenes: Experimental and theoretical evidence for the \({\mathrm{M}}_{3}{\mathrm{N}}^{6+}@{\mathrm{C}}_{2n}^{6-}\) model. Angewandte Chemie, International Edition, 48, 1425–1428.Google Scholar
  42. Chaur, M. N., Melin, F., Ortiz, A. L., & Echegoyen, L. (2009b). Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angewandte Chemie, International Edition, 48, 7514–7538.Google Scholar
  43. Chen, Z. (2004). The smaller fullerene C50, isolated as C50Cl10. Angewandte Chemie, International Edition, 43, 4690–4691.Google Scholar
  44. Chen, Z., Thiel, W., & Hirsch, A. (2003). Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: Dependence on the carbon-atom pyramidalization. Chemical Physics and Physical Chemistry, 4, 93–97.Google Scholar
  45. Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G., & Cohen, M. L. (1996). Pure carbon nanoscale devices: Nanotube heterojunctions. Physical Review Letters, 76, 971–974.Google Scholar
  46. Cho, E., Shin, S., & Yoon, Y.-G. (2008). First-principles studies on carbon nanotubes functionalized with azomethine ylides. The Journal of Physical Chemistry C, 112, 11667–11672.Google Scholar
  47. Christian, J. F., Wan, Z., & Anderson, S. L. (1992). O++C60 ⋅ C60O+ production and decomposition, charge transfer, and formation of C59O+. Dopeyball or [CO@C58 +]. Chemical Physics Letters, 199, 373–378.Google Scholar
  48. Chun, H., Hahm, M. G., Homma, Y., Meritz, R., Kuramochi, K., Menon, L., Ci, L., Ajayan, P. M., & Jung, Y. J. (2009). Engineering low-aspect ratio carbon nanostructures: Nanocups, nanorings, and nanocontainers. ACS Nano, 3, 1274–1278.Google Scholar
  49. Cioslowski, J., Rao, N., & Moncrieff, D. (2002). Electronic structures and energetics of [5,5] and [9,0] single-walled carbon nanotubes. Journal of the American Chemical Society, 124, 8485–8489.Google Scholar
  50. Close, G. F., Yasuda, S., Paul, B., Fujita, S., & Wong, H. S. P. (2008). A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Letters, 8, 706–709.Google Scholar
  51. Cohen, M. L. (1993). Predicting useful materials. Science, 261, 307–308.Google Scholar
  52. Crassous, J., Rivera, J., Fender, N. S., Shu, L., Echegoyen, L., Thilgen, C., Herrmann, A., & Diederich, F. (1999). Chemistry of C84: Separation of three constitutional isomers and optical resolution of D2-C84 by using the Bingel-retro-Bingel strategy. Angewandte Chemie, International Edition, 38, 1613–1617.Google Scholar
  53. Cuesta, I. G., Pedersen, T. B., Koch, H., & de Meras, A. S. (2006). Carbon nanorings: A challenge to theoretical chemistry. Chemical Physics and Physical Chemistry, 7, 2503–2507.Google Scholar
  54. Cyranski, M. K., Howard, S. T., & Chodkiewicz, M. L. (2004). Bond energy, aromatic stabilization energy and strain in IPR fullerenes. Chemical Communications, 2458–2459.Google Scholar
  55. Dai, H. (2002). Carbon nanotubes: Synthesis, integration, and properties. Accounts of Chemical Research, 35, 1035–1044.Google Scholar
  56. David, W. I. F., Ibberson, R. M., Matthewman, J. C., Prassides, K., Dennis, T. J. S., Hare, J. P., Kroto, H. W., Taylor, R., & Walton, D. R. M. (1991). Crystal structure and bonding of ordered C60. Nature, 353, 147–149.Google Scholar
  57. David, V. P., Lin, X., Zhang, H., Liu, S., & Kappes, M. M. (1992). Transmission electron microscopy of C70 single crystals at room temperature. Journal of Materials Research, 7, 2440–2446.Google Scholar
  58. Deng, J.-P., Ju, D.-D., Her, G.-R., Mou, C.-Y., Chen, C.-J., Lin, Y.-Y., & Han, C.-C. (1993). Odd-numbered fullerene fragment ions from C60 oxides. Journal of Physical Chemistry, 97, 11575–11577.Google Scholar
  59. Denis, P. A., Iribarne, F., & Faccio, R. (2009). Hydrogenated double wall carbon nanotubes. Journal of Chemical Physics, 130, 194704-1– 194704-10.Google Scholar
  60. Dennis, T. J. S., & Shinohara, H. (1998). Isolation and characterisation of the two major isomers of [84]fullerene (C84). Chemical Communications, 619–620.Google Scholar
  61. Dereli, G., & Sungu, B. (2007). Temperature dependence of the tensile properties of single-walled carbon nanotubes: O(N) tight-binding molecular-dynamics simulations. Physical Review B, 75, 184104-1–184104-6.Google Scholar
  62. Dewar, M. J. S., & Thiel, W. (1977). Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, 99, 4899–4907.Google Scholar
  63. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.Google Scholar
  64. Dewar, M. J. S., Jie, C., & Yu, J. (1993). SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron, 49, 5003–5038.Google Scholar
  65. Dhar, S., Liu, Z., Thomale, J., Dai, H., & Lippard, S. J. (2008). Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. Journal of the American Chemical Society, 130, 11467–11476.Google Scholar
  66. Diederich, F., Ettl, R., Rubin, Y., Whetten, R. L., Beck, R., Alvarez, M., Anz, S., Sensharma, D., Wudl, F., Khemani, K. C., & Koch, A. (1991a). The higher fullerenes: Isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h-C70. Science, 252, 548–551.Google Scholar
  67. Diederich, F., Whetten, R. L., Thilgen, C., Ettl, R., Chao, I., & Alvarez, M. M. (1991b). Fullerene isomerism: Isolation of C2v,-C78 and D3-C78. Science, 254, 1768–1770.Google Scholar
  68. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., & Heben, M. J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377–379.Google Scholar
  69. Dinadayalane, T. C., & Leszczynski, J. (2007a). Toward nanomaterials: Structural, energetic and reactivity aspects of single-walled carbon nanotubes. In P. B. Balbuena & J. M. Seminario (Eds.), Nanomaterials: Design and simulation (Theoretical and computational chemistry, Vol. 18, pp. 167–199). Amsterdam: Elsevier.Google Scholar
  70. Dinadayalane, T. C., & Leszczynski, J. (2007b). StoneWales defects with two different orientations in (5, 5) single-walled carbon nanotubes: A theoretical study. Chemical Physics Letters, 434, 86–91.Google Scholar
  71. Dinadayalane, T. C., & Leszczynski, J. (2009). Toward understanding of hydrogen storage in single-walled carbon nanotubes by chemisorption mechanism. In J. Leszczynski & M. K. Shukla (Eds.), Practical aspects of computational chemistry: Methods, concepts and applications (pp. 297–313). Netherlands: Springer.Google Scholar
  72. Dinadayalane, T. C., & Sastry, G. N. (2001). Synthetic strategies toward buckybowls and C60: Benzannulation is remarkably facile compared to cyclopentannulation. Tetrahedron Letters, 42, 6421–6423.Google Scholar
  73. Dinadayalane, T. C., & Sastry, G. N. (2002a). Structure-energy relationships in curved polycyclic aromatic hydrocarbons: Study of benzocorannulenes. Journal of Organic Chemistry, 67, 4605–4607.Google Scholar
  74. Dinadayalane, T. C., & Sastry, G. N. (2002b). An assessment of semiempirical (MNDO, AM1 and PM3) methods to model buckybowls. Journal of Molecular Structure (Theochem), 579, 63–72.Google Scholar
  75. Dinadayalane, T. C., & Sastry, G. N. (2003). Isolated pentagon rule in buckybowls: A computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedron, 59, 8347–8351.Google Scholar
  76. Dinadayalane, T. C., Priyakumar, U. D., & Sastry, G. N. (2001). Theoretical studies on the effect of sequential benzannulation to corannulene. Journal of Molecular Structure (Theochem), 543, 1–10.Google Scholar
  77. Dinadayalane, T. C., Priyakumar, U. D., & Sastry, G. N. (2002). Ring closure synthetic strategies toward buckybowls: Benzannulation versus cyclopentannulation. Journal of the Chemical Society, Perkin Transactions 2, 94–101.Google Scholar
  78. Dinadayalane, T. C., Deepa, S., & Sastry, G. N. (2003). Is peri hydrogen repulsion responsible for flattening buckybowls? The effect of ring annelation to the rim of corannulene. Tetrahedron Letters, 44, 4527–4529.Google Scholar
  79. Dinadayalane, T. C., Deepa, S., Reddy, A. S., & Sastry, G. N. (2004). Density functional theory study on the effect of substitution and ring annelation to the rim of corannulene. Journal of Organic Chemistry, 69, 8111–8114.Google Scholar
  80. Dinadayalane, T. C., Gorb, L., Simeon, T., & Dodziuk, H. (2007a). Cumulative p-p interaction triggers unusually high stabilization of linear hydrocarbons inside the single-walled carbon nanotube. International Journal of Quantum Chemistry, 107, 2204–2210.Google Scholar
  81. Dinadayalane, T. C., Kaczmarek, A., Lukaszewicz, J., & Leszczynski, J. (2007b). Chemisorption of hydrogen atoms on the sidewalls of armchair single-walled carbon nanotubes. The Journal of Physical Chemistry C, 111, 7376–7383.Google Scholar
  82. Ding, F. (2005). Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end. Physical Review B, 72, 245409-1–245409-7.Google Scholar
  83. Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: Their properties and applications. California: Academic.Google Scholar
  84. Dresselhaus, M. S., Dresselhaus, G., & Avouris, Ph. (Eds.). (2001). Carbon nanotubes: Synthesis, structure, properties, and applications. Berlin: Springer.Google Scholar
  85. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A. G. S., Pimenta, M. A., & Saito, R. (2002). Single nanotube Raman spectroscopy. Accounts of Chemical Research, 35, 1070–1078.Google Scholar
  86. Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 47–99.Google Scholar
  87. Dresselhaus, M. S., Dresselhaus, G., & Jorio, A. (2007). Raman spectroscopy of carbon nanotubes in 1997 and 2007. The Journal of Physical Chemistry C, 111, 17887–17893.Google Scholar
  88. Dulap, B. I., & Zope, R. R. (2006). Efficient quantum-chemical geometry optimization and the structure of large icosahedral fullerenes. Chemical Physics Letters, 422, 451–454.Google Scholar
  89. Dunlap, B. I., Brenner, D. W., Mintmire, J. W., Mowrey, R. C., & White, C. T. (1991). Local density functional electronic structures of three stable icosahedral fullerenes. Journal of Physical Chemistry, 95, 8737–8741.Google Scholar
  90. Duplock, E. J., Scheffler, M., & Lindan, P. J. D. (2004). Hallmark of perfect graphene. Physical Review Letters, 92, 225502-1–225502-4.Google Scholar
  91. Eggen, B. R., Heggie, M. I., Jungnickel, G., Latham, C. D., Jones, R., & Briddon, P. R. (1996). Autocatalysis during fullerene growth. Science, 272, 87–89.Google Scholar
  92. Ekinci, K. L., Huang, X. M. H., & Roukes, M. L. (2004). Ultrasensitive nanoelectromechanical mass detection. Applied Physics Letters, 84, 4469–4471.Google Scholar
  93. Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., & Novoselov, K. S. (2009). Control of graphenes properties by reversible hydrogenation: Evidence for graphane. Science, 323, 610–613.Google Scholar
  94. Ertekin, E., Chrzan, D. C., & Daw, M. S. (2009). Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene. Physical Review B, 79, 155421-1–155421-17.Google Scholar
  95. Esquivel, E. V., & Murr, L. E. (2004). A TEM analysis of nanoparticulates in a polar ice core. Materials Characterization, 52, 15–25.Google Scholar
  96. Feng, X., Irle, S., Witek, H., Morokuma, K., Vidic, R., & Borguet, E. (2005). Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. Journal of the American Chemical Society, 127, 10533–10538.Google Scholar
  97. Fischer, J. E., Heiney, P. A., McGhie, A. R., Romanow, W. J., Denenstein, A. M., McCauley, J. P., Jr., & Smith, A. B., III. (1991). Compressibility of solid C60. Science, 252, 1288–1290.Google Scholar
  98. Fowler, P. W., & Heine, T. (2001). Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation. Journal of the Chemical Society, Perkin Transactions 2, 487–490.Google Scholar
  99. Fowler, P. W., & Manolopoulos, D. E. (1995). An atlas of fullerenes. New York: Oxford University Press.Google Scholar
  100. Frisch, M. J., et al. (2003). Gaussian 03, revision E.1. Pittsburg, PA: Gaussian, Inc.Google Scholar
  101. Fu, W., Xu, L., Azurmendi, H., Ge, J., Fuhrer, T., Zuo, T., Reid, J., Shu, C., Harich, K., & Dorn, H. C. (2009). 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40–43). Journal of the American Chemical Society, 131, 11762–11769 and references therein.Google Scholar
  102. Galano, A. (2006). On the influence of diameter and length on the properties of armchair single-walled carbon nanotubes: A theoretical chemistry approach. Chemical Physics, 327, 159–170.Google Scholar
  103. Geim, A. K. (2009). Graphene: Status and prospects. Science, 324, 1530–1534.Google Scholar
  104. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.Google Scholar
  105. Govind, N., Andzelm, J., & Maiti, A. (2008). Dissociation chemistry of gas molecules on carbon nanotubes Applications to chemical sensing. IEEE Sensors Journal, 8, 837–841.Google Scholar
  106. Gu, Z., Peng, H., Hauge, R. H., Smalley, R. E., & Margrave, J. L. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Letters, 2, 1009–1013.Google Scholar
  107. Gueorguiev, G. K., Pacheco, J. M., & Tomanek, D. (2004). Quantum size effects in the polarizability of carbon fullerenes. Physical Review Letters, 92, 215501-1–215501-4.Google Scholar
  108. Guo, T., Diener, M. D., Chai, Y., Alford, M. J., Haufler, R. E., McClure, S. M., Ohno, T., Weaver, J. H., Scuseria, G. E., & Smalley, R. E. (1992). Uranium stabilization of C28: A tetravalent fullerene. Science, 257, 1661–1663.Google Scholar
  109. Haddon, R. C. (1993). Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science, 261, 1545–1550.Google Scholar
  110. Haddon, R. C., & Scott, L. T. (1986). π-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: π-Orbital axis vector analysis. Pure and Applied Chemistry, 58, 137–142.Google Scholar
  111. Hamada, N., Sawada, S., & Oshiyama, A. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 68, 1579–1581.Google Scholar
  112. Harutyunyan, A. R., Chen, G., Paronyan, T. M., Pigos, E. M., Kuznetsov, O. A., Hewaparakrama, K., Kim, S. M., Zakharov, D., Stach, E. A., & Sumanasekera, G. U. (2009). Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science, 326, 116–120.Google Scholar
  113. He, H. Y., & Pan, B. C. (2009). Electronic structures and Raman features of a carbon nanobud. The Journal of Physical Chemistry C, 113, 20822–20826.Google Scholar
  114. Heath, J. R. (1991). ACS Symposium Series, 24, 1–23.Google Scholar
  115. Helden, G. v., Gotts, N. G., & Bowers, M. T. (1993). Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature, 363, 60–63.Google Scholar
  116. Hernández, E., Ordejón, P., & Terrones, H. (2001). Fullerene growth and the role of nonclassical isomers. Physical Review B, 63, 193403-1–193403-4.Google Scholar
  117. Heymann, D., Chibante, L. P. F., Brooks, R. R., Wolbach, W. S., & Smalley, R. E. (1994). Fullerenes in the cretaceous-tertiary boundary layer. Science, 265, 645–647.Google Scholar
  118. Heymann, D., Jenneskens, L. W., Jehlicka, J., Koper, C., & Vlietstra, E. (2003). Terrestrial and extraterrestrial fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures, 11, 333–370.Google Scholar
  119. Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., & Iijima, S. (2000). One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Physical Review Letters, 85, 5384–5387.Google Scholar
  120. Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angewandte Chemie, International Edition, 41, 1853–1859.Google Scholar
  121. Howard, J. B., Mckinnon, J. T., Makarovsky, Y., Lafleur, A. L., & Johnson, M. E. (1991). Fullerenes C60 and C70 in flames. Nature, 352, 139–141.Google Scholar
  122. Hu, Y. H., & Ruckenstein, E. (2003). Ab initio quantum chemical calculations for fullerene cages with large holes. Journal of Chemical Physics, 119, 10073–10080.Google Scholar
  123. Hu, Y. H., & Ruckenstein, E. (2004). Quantum chemical density-functional theory calculations of the structures of defect C60 with four vacancies. Journal of Chemical Physics, 120, 7971–7975.Google Scholar
  124. Hudhomme, P., & Cousseau, J. (2007). Plastic solar cells using fullerene derivaties in the photoactive layer. In F. Langa & J.-F. Nierengarten (Eds.), Fullerenes: Principles and applications. London: Royal Society of Chemistry.Google Scholar
  125. Hutter, J. et al. Computer code CPMD, version 3.11 (copyright IBM Corp. 1990–2008; copyright für Festkörperforschung Stuttgart, Germany, 1997–2001), http://www.cpmd.org/.
  126. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.Google Scholar
  127. Iijima, S. (2007). A career in carbon. Nature Nanotechnology, 2, 590–591.Google Scholar
  128. Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603–605.Google Scholar
  129. Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., & Takahashi, K. (1999). Nano-aggregates of single-walled graphitic carbon nano-horns. Chemical Physics Letters, 309, 165–170.Google Scholar
  130. Ioffe, I. N., Goryunkov, A. A., Tamm, N. B., Sidorov, L. N., Kemnitz, E., & Troyanov, S. I. (2009). Fusing pentagons in a fullerene cage by chlorination: IPR D2-C76 rearranges into non-IPR C76Cl24. Angewandte Chemie, International Edition, 48, 5904–5907.Google Scholar
  131. Jiang, H., Nasibulin, A. G., Brown, D. P., & Kauppinen, E. I. (2007). Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon, 45, 662–667.Google Scholar
  132. Jiang, D., Cooper, V. R., & Dai, S. (2009). Porous graphene as the ultimate membrane for gas separation. Nano Letters, 9, 4019–4024.Google Scholar
  133. Kaczmarek, A., Dinadayalane, T. C., Lukaszewicz, J., & Leszczynski, J. (2007). Effect of tube length on the chemisorptions of one and two hydrogen atoms on the sidewalls of (3,3) and (4,4) single-walled carbon nanotubes: A theoretical study. International Journal of Quantum Chemistry, 107, 2211–2219.Google Scholar
  134. Kadish, K. M., & Ruoff, R. S. (Eds.). (2002). Fullerene: Chemistry, physics and technology. New York: Wiley.Google Scholar
  135. Kagaku (1970). 25, pp. 854.Google Scholar
  136. Kar, T., Bettinger, H. F., Scheiner, S., & Roy, A. K. (2008). Noncovalent π-π stacking and CH–π interactions of aromatics on the surface of single-wall carbon nanotubes: An MP2 study. The Journal of Physical Chemistry C, 112, 20070–20075.Google Scholar
  137. Karousis, N., Papi, R. M., Siskos, A., Vakalopoulou, P., Glezakos, P., Sarigiannis, Y., Stavropoulos, G., Kyriakidis, D. A., & Tagmatarchis, N. (2009). Peptidomimetic functionalized carbon nanotubes with antitrypsin activity. Carbon, 47, 3550–3558.Google Scholar
  138. Kessler, B., Bringer, A., Cramm, S., Schlebusch, C., Eberhardt, W., Suzuki, S., Achiba, Y., Esch, F., Barnaba, M., & Cocco, D. (1997). Evidence for incomplete charge transfer and La-derived states in the valence bands of endohedrally doped La@C82. Physical Review Letters, 79, 2289–2292.Google Scholar
  139. Kikuchi, K., Nakahara, N., Wakabayashi, T., Suzuki, S., Shiromaru, H., Miyake, Y., Saito, K., Ikemoto, I., Kainosho, M., & Achiba, Y. (1992a). NMR characterization of isomers of C78, C82 and C84 fullerenes. Nature, 357, 142–145.Google Scholar
  140. Kikuchi, K., Nakahara, N., Wakabayashi, T., Honda, M., Matsumiya, H., Moriwaki, T., Suzuki, S., Shiromaru, H., Saito, K., Yamauchi, K., Ikemoto, I., & Achiba, Y. (1992b). Isolation and identification of fullerene family: C76, C78, C82, C84, C90 and C96. Chemical Physics Letters, 188, 177–180.Google Scholar
  141. Kimura, T., Sugai, T., Shinohara, H., Goto, T., Tohji, K., & Matsuoka, I. (1995). Preferential arc-discharge production of higher fullerenes. Chemical Physics Letters, 246, 571–576.Google Scholar
  142. Klein, D. J., & Schmalz, T. G. (1990). In I. Hargittai (Ed.), Quasicrystals, networks, and molecules of fivefold symmetry (p. 239). New York: VCH.Google Scholar
  143. Knobel, R. G., & Cleland, A. N. (2003). Nanometre-scale displacement sensing using a single electron transistor. Nature, 424, 291–293.Google Scholar
  144. Kostov, M. K., Santiso, E. E., George, A. M., Gubbins, K. E., & Nardelli, M. B. (2005). Dissociation of water on defective carbon substrates. Physical Review Letters, 95, 136105-1–136105-4.Google Scholar
  145. Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, 347, 354–358.Google Scholar
  146. Kresse, G., & Furthmuller, J. (1996a). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169–11186.Google Scholar
  147. Kresse, G., & Furthmuller, J. (1996b). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15–50.Google Scholar
  148. Kroto, H. W. (1987). The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 329, 529–531.Google Scholar
  149. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–163.Google Scholar
  150. Kubozono, Y., Maeda, H., Takabayashi, Y., Hiraoka, K., Nakai, T., Kashino, S., Emura, S., Ukita, S., & Sogabe, T. (1996). Extractions of Y@C60, Ba@C60, La@C60, Ce@C60, Pr@C60, Nd@C60, and Gd@C60 with aniline. Journal of the American Chemical Society, 118, 6998–6999.Google Scholar
  151. Launois, P., Chorro, M., Verberck, B., Albouy, P.-A., Rouziere, S., Colson, D., Foget, A., Noe, L., Kataura, H., Monthioux, M., & Cambedouzou, J. (2010). Transformation of C70 peapods into double walled carbon nanotubes. Carbon, 48, 89–98.Google Scholar
  152. Lavrik, N. V., & Datskos, P. G. (2003). Femtogram mass detection using photothermally actuated nanomechanical resonators. Applied Physics Letters, 82, 2697–2699.Google Scholar
  153. Lee, S. U., & Han, Y.-K. (2004). Structure and stability of the defect fullerene clusters of C60: C59, C58, and C57. Journal of Chemical Physics, 121, 3941–3942.Google Scholar
  154. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.Google Scholar
  155. Lee, C., Kim, D., Jurecka, P., Tarakeshwar, P., Hobza, P., & Kim, K. S. (2007). Understanding of assembly phenomena by aromatic-aromatic interactions: Benzene dimer and the substituted systems. The Journal of Physical Chemistry. A, 111, 3446–3457.Google Scholar
  156. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.Google Scholar
  157. Lherbier, A., Blase, X., Niquet, Y.-M., Triozon, N., & Roche, S. (2008). Charge transport in chemically doped 2D graphene. Physical Review Letters, 101, 036808-1–036808-4.Google Scholar
  158. Li, L., Reich, S., & Robertson, J. (2005). Defect energies of graphite: Density-functional calculations. Physical Review B, 72, 184109-1–184109-10.Google Scholar
  159. Li, J., Wu, C., & Guan, L. (2009a). Lithium insertion/extraction properties of nanocarbon materials. The Journal of Physical Chemistry C, 113, 18431–18435.Google Scholar
  160. Li, Y., Zhou, Z., Shen, P., & Chen, Z. (2009b). Structural and electronic properties of graphane nanoribbons. The Journal of Physical Chemistry C, 113, 15043–15045.Google Scholar
  161. Liu, J., Dai, H., Hafner, J. H., Colbert, D. T., Smalley, R. E., Tans, S. J., & Dekker, C. (1997). Fullerene ‘crop circles.’ Nature, 385, 780–781.Google Scholar
  162. Liu, Z., Sun, X., Nakayama-Ratchford, N., & Dai, H. (2007). Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 1, 50–56.Google Scholar
  163. Lopez-Urias, F., Terrones, M., & Terrones, H. (2003). Electronic properties of giant fullerenes and complex graphitic nanostructures with novel morphologies. Chemical Physics Letters, 381, 683–690.Google Scholar
  164. Lu, X., & Chen, Z. (2005). Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes ( < C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696.Google Scholar
  165. Lu, A. J., & Pan, B. C. (2004). Nature of single vacancy in achiral carbon nanotubes. Physical Review Letters, 92, 105504-1–105504-4.Google Scholar
  166. Lu, J., Zhang, X., & Zhao, X. (2000). Metal-cage hybridization in endohedral La@C60, Y@C60 and Sc@C60. Chemical Physics Letters, 332, 51–57.Google Scholar
  167. Lu, X., Chen, Z., Thiel, W., Schleyer, P. v. R., Huang, R., & Zheng, L. (2004). Properties of fullerene[50] and D 5h decachlorofullerene[50]: A computational study. Journal of the American Chemical Society, 126, 14871–14878.Google Scholar
  168. Lu, X., Chen, Z., & Schleyer, P. V. R. (2005). Are Stone-Wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes? Journal of the American Chemical Society, 127, 20–21.Google Scholar
  169. Lu, J., Yuan, D., Liu, J., Leng, W., & Kopley, T. E. (2008). Three dimensional single-walled carbon nanotubes. Nano Letters, 8, 3325–3329 and references therein.Google Scholar
  170. Ma, J., Alfe, D., Michaelides, A., & Wang, E. (2009). Stone-Wales defects in graphene and other planar sp2-bonded materials. Physical Review B, 80, 033407-1–033407-4.Google Scholar
  171. MacKenzie, K. J., See, C. H., Dunens, O. M., & Harris, A. T. (2008). Do single-walled carbon nanotubes occur naturally? Nature Nanotechnology, 3, 310.Google Scholar
  172. Manolopoulos, D. E., & Fowler, P. W. (1991). Structural proposals for endohedral metal-fullerene complexes. Chemical Physics Letters, 187, 1–7.Google Scholar
  173. Manolopoulos, D. E., & Fowler, P. W. (1992). Molecular graphs, point groups, and fullerenes. Journal of Chemical Physics, 96, 7603–7614.Google Scholar
  174. Maruyama, S., & Yamaguch, Y. (1998). A molecular dynamics demonstration of annealing to a perfect C60 structure. Chemical Physics Letters, 286, 343–349.Google Scholar
  175. Maseras, F., & Morokuma, K. (1995). IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. Journal of Computational Chemistry, 16, 1170–1179.Google Scholar
  176. Mashino, T., Nishikawa, D., Takahashi, K., Usui, N., Yamori, T., Seki, M., Endo, T., & Mochizuki, M. (2003). Antibacterial and antiproliferative activity of cationic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 13, 4395–4397.Google Scholar
  177. Matsuo, Y., Tahara, K., & Nakamura, E. (2003). Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes. Organic Letters, 5, 3181–3184.Google Scholar
  178. McKenzie, D. R., Davis, C. A., Cockayne, D. J. H., Muller, D. A., & Vassallo, A. M. (1992). The structure of the C70 molecule. Nature, 355, 622–624.Google Scholar
  179. Mehta, G., & Rao, H. S. P. (1998). Synthetic studies directed towards bucky-balls and bucky-bowls. Tetrahedron, 54, 13325–13370.Google Scholar
  180. Mehta, G., Panda, G., Yadav, R. D., & Kumar, K. R. (1997). A synthetic approach towards Pinakene, a C28H14 fragment of [70]-fullerene. Indian Journal of Chemistry (Section B), 36, 301–302.Google Scholar
  181. Melin, F., Chaur, M. N., Engmann, S., Elliott, B., Kumbhar, A., Athans, A. J., & Echegoyen, L. (2007). The large Nd3N@C2n (40 ≤ n ≤ 49) cluster fullerene family: Preferential templating of a C88 cage by a trimetallic nitride cluster. Angewandte Chemie, International Edition, 46, 9032–9035.Google Scholar
  182. Menon, M., & Srivastava, D. (1997). Carbon nanotube T junctions: Nanoscale metal-semiconductor-metal contact devices. Physical Review Letters, 79, 4453–4456.Google Scholar
  183. Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommine, M. F., & Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 8, 3582–3586.Google Scholar
  184. Mielke, S. L., Troya, D., Zhang, S., Li, J.-L., Xiao, S., Car, R., Ruoff, R. S., Schatz, G. C., & Belytschko, T. (2004). The role of vacancy defects and holes in the fracture of carbon nanotubes. Chemical Physics Letters, 390, 413–420.Google Scholar
  185. Mintmire, J. W., Dunlap, B. I., & White, C. T. (1992). Are fullerene tubules metallic? Physical Review Letters, 68, 631–634.Google Scholar
  186. Miwa, R. H., Martins, T. B., & Fazzio, A. (2008). Hydrogen adsorption on boron doped graphene: An ab initio study. Nanotechnology, 19, 155708-1–155708-7.Google Scholar
  187. Miyake, Y., Minami, T., Kikuchi, K., Kainosho, M., & Achiba, Y. (2000). Trends in structure and growth of higher fullerenes isomer structure of C86 and C88 . Molecular Crystals and Liquid Crystals, 340, 553–558.Google Scholar
  188. Miyamoto, Y., Rubio, A., Berber, S., Yoon, M., & Tomanek, D. (2004). Spectroscopic characterization of Stone-Wales defects in nanotubes. Physical Review B, 69, 121413-1–121413-4.Google Scholar
  189. Mizorogi, N., & Aihara, J. (2003). PM3 localization energies for the isolated-pentagon isomers of the C84 fullerene. Physical Chemistry Chemical Physics, 5, 3368–3371.Google Scholar
  190. Monthioux, M., & Kuznetsov, V. L. (2006). Who should be given the credit for the discovery of carbon nanotubes? Carbon, 44, 1621–1623.Google Scholar
  191. Moro, L., Ruoff, R. S., Becker, C. H., Lorents, D. C., & Malhotra, R. (1993). Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry. Journal of Physical Chemistry, 97, 6801–6805.Google Scholar
  192. Morokuma, K., Wang, Q., & Vreven, T. (2006). Performance evaluation of the three-layer ONIOM method: Case study for a zwitterionic peptide. Journal of Chemical Theory and Computation, 2, 1317–1324.Google Scholar
  193. Murry, R. L., Strout, D. L., Odom, G. K., & Scuseria, G. E. (1993). Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. Nature, 366, 665–667.Google Scholar
  194. Nasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G., Hassanien, A., Shandakov, S. D., Lolli, G., Resasco, D. E., Choi, M., Tomanek, D., & Kauppinen, E. I. (2007a). A novel hybrid carbon material. Nature Nanotechnology, 2, 156–161.Google Scholar
  195. Nasibulin, A. G., Anisimov, A. S., Pikhitsa, P. V., Jiang, H., Brown, D. P., Choi, M., & Kauppinen, E. I. (2007b). Investigations of nanobud formation. Chemical Physics Letters, 446, 109–114.Google Scholar
  196. Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 109–162.Google Scholar
  197. Nikitin, A., Ogasawara, H., Mann, D., Denecke, R., Zhang, Z., Dai, H., Cho, K., & Nilsson, A. (2005). Hydrogenation of single-walled carbon nanotubes. Physical Review Letters, 95, 225507-1–225507-1.Google Scholar
  198. Nishidate, K., & Hasegawa, M. (2005). Energetics of lithium ion adsorption on defective carbon nanotubes. Physical Review B, 71, 245418-1–245418-6.Google Scholar
  199. Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E., & Haddon, R. C. (2002). Chemistry of single-walled carbon nanotubes. Accounts of Chemical Research, 35, 1105–1113.Google Scholar
  200. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.Google Scholar
  201. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005a). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.Google Scholar
  202. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005b). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.Google Scholar
  203. Oberlin, A., Endo, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32, 335–349.Google Scholar
  204. O’Brien, S. C., Heath, J. R., Curl, R. F., & Smalley, R. E. (1988). Photophysics of buckminsterfullerene and other carbon cluster ions. Journal of Chemical Physics, 88, 220–230.Google Scholar
  205. Okada, S. (2007). Radial-breathing mode frequencies for nanotubes encapsulating fullerenes. Chemical Physics Letters, 438, 59–62.Google Scholar
  206. Okada, S., & Saito, S. (1996). Number of extractable fullerene isomers and speciality of C84. Chemical Physics Letters, 252, 94–100.Google Scholar
  207. Ormsby, J. L., & King, B. T. (2007). The regioselectivity of addition to carbon nanotube segments. Journal of Organic Chemistry, 72, 4035–4038.Google Scholar
  208. Osuna, S., Morera, J., Cases, M., Morokuma, K., & Sola, M. (2009). Diels-Alder reaction between cyclopentadiene and C60: An analysis of the performance of the ONIOM method for the study of chemical reactivity in fullerenes and nanotubes. The Journal of Physical Chemistry. A, 113, 9721–9726.Google Scholar
  209. Ouyang, M., Huang, J.-L., & Lieber, C. M. (2002). Fundamental electronic properties and applications of single-walled carbon nanotubes. Accounts of Chemical Research, 35, 1018–1025.Google Scholar
  210. Palkar, A., Kumbhar, A., Athans, A. J., & Echegoyen, L. (2008). Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chemistry of Materials, 20, 1685–1687.Google Scholar
  211. Park, S., Srivastava, D., & Cho, K. (2003). Generalized chemical reactivity of curved surfaces: Carbon nanotubes. Nano Letters, 3, 1273–1277.Google Scholar
  212. Park, S. S., Liu, D., & Hagelberg, F. (2005). Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules. The Journal of Physical Chemistry. A, 109, 8865–8873.Google Scholar
  213. Peng, X., Komatsu, N., Bhattacharya, S., Shimawaki, T., Aonuma, S., Kimura, T., & Osuka, A. (2007). Optically active single-walled carbon nanotubes. Nature Nanotechnology, 2, 361–365.Google Scholar
  214. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.Google Scholar
  215. Pereira, V. M., Neto, A. H. C., & Peres, N. M. R. (2009). Tight-binding approach to uniaxial strain in graphene. Physical Review B, 80, 045401-1–045401-8.Google Scholar
  216. Pierson, H. O. (1993). Handbook of carbon, graphite, diamonds and fullerenes: Processing, properties and applications. New Jersey: Noyes Publications.Google Scholar
  217. Piskoti, C., Yarger, J., & Zettl, A. (1998). C36, a new carbon solid. Nature, 393, 771–774.Google Scholar
  218. Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., & Geim, A. K. (2008). Chaotic Dirac billiard in graphene quantum dots. Science, 320, 356–358.Google Scholar
  219. Poonjarernsilp, C., Sano, N., Tamon, H., & Charinpanitkul, T. (2009). A model of reaction field in gas-injected arc-in-water method to synthesize single-walled carbon nanohorns: Influence of water temperature. Journal of Applied Physics, 106, 104315-1–104315-7.Google Scholar
  220. Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Worth, J., Scott, L. T., Gelmont, M., Olevano, D., & Issendorff, B. v. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 407, 60–63.Google Scholar
  221. Priyakumar, U. D., & Sastry, G. N. (2001a). Heterobuckybowls: A theoretical study on the structure, bowl-to-bowl inversion barrier, bond length alternation, structure-inversion barrier relationship, stability, and synthetic feasibility. Journal of Organic Chemistry, 66, 6523–6530.Google Scholar
  222. Priyakumar, U. D., & Sastry, G. N. (2001b). Tailoring the curvature, bowl rigidity and stability of heterobuckybowls: Theoretical design of synthetic strategies towards heterosumanenes. Journal of Molecular Graphics and Modelling, 19, 266–269.Google Scholar
  223. Priyakumar, U. D., & Sastry, G. N. (2001c). Theory provides a clue to accomplish the synthesis of sumanene, C21H12, the prototypical C3v-buckybowl. Tetrahedron Letters, 42, 1379–1381.Google Scholar
  224. Qin, L.-C. (2007). Determination of the chiral indices (n, m) of carbon nanotubes by electron diffraction. Physical Chemistry Chemical Physics, 9, 31–48.Google Scholar
  225. Radushkevich, L. V., & Lukyanovich, V. M. (1952). O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn. Fisic. Chim., 26, 88–95.Google Scholar
  226. Rao, C. N. R., Voggu, R., & Govindaraj, A. (2009a). Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. Nanoscale, 1, 96–105.Google Scholar
  227. Rao, F., Li, T., & Wang, Y. (2009b). Growth of all-carbon single-walled carbon nanotubes from diamonds and fullerenes. Carbon, 47, 3580–3584.Google Scholar
  228. Robertson, D. H., Brenner, D. W., & Mintmire, J. W. (1992). Energetics of nanoscale graphitic tubules. Physical Review B, 45, 12592–12595.Google Scholar
  229. Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L., & Perkins, F. K. (2006). Role of defects in single-walled carbon nanotube chemical sensors. Nano Letters, 6, 1747–1751.Google Scholar
  230. Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8, 3137–3140.Google Scholar
  231. Rohlfing, E. A., Cox, D. M., & Kaldor, A. (1984). Production and characterization of supersonic carbon cluster beams. Journal of Chemical Physics, 81, 3322–3330.Google Scholar
  232. Rojas, A., Martínez, M., Amador, P., & Torres, L. A. (2007). Increasing stability of the fullerenes with the number of carbon atoms: The experimental evidence. The Journal of Physical Chemistry. B, 111, 9031–9035.Google Scholar
  233. Saito, M., & Miyamoto, Y. (2001). Theoretical identification of the smallest fullerene, C20. Physical Review Letters, 87, 035503-1–035503-4.Google Scholar
  234. Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters, 60, 2204–2206.Google Scholar
  235. Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1998). Physical properties of carbon nanotubes. London: Imperial College Press.Google Scholar
  236. Sakurai, H., Daiko, T., & Hirao, T. (2003). A synthesis of sumanene, a fullerene fragment. Science, 301, 1878.Google Scholar
  237. Sano, M., Kamino, A., Okamura, J., & Shinkai, S. (2001). Ring closure of carbon nanotubes. Science, 293, 1299–1301.Google Scholar
  238. Sastry, G. N., & Priyakumar, U. D. (2001). The role of heteroatom substitution in the rigidity and curvature of buckybowls. A theoretical study. Journal of the Chemical Society, Perkin Transactions 2, 30–40.Google Scholar
  239. Sastry, G. N., Jemmis, E. D., Mehta, G., & Shah, S. R. (1993). Synthetic strategies towards C60. Molecular mechanics and MNDO study on sumanene and related structures. Journal of the Chemical Society, Perkin Transactions 2, 1867–1871.Google Scholar
  240. Sastry, G. N., Rao, H. S. P., Bednarek, P., & Priyakumar, U. D. (2000). Effect of substitution on the curvature and bowl-to-bowl inversion barrier of bucky-bowls. Study of mono-substituted corannulenes (C19XH10, X = B, N+, P+ and Si). Chemical Communications, 843–844.Google Scholar
  241. Saunders, M., Jiménez-Vázquez, H. A., Cross, R. J., & Poreda, R. J. (1993). Stable compounds of helium and neon: He@C60 and Ne@C60. Science, 259, 1428–1430.Google Scholar
  242. Scheina, S., & Friedrich, T. (2008). A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proceedings of the National Academy of Sciences of the United States of America, 105, 19142–19147.Google Scholar
  243. Scott, L. T., Boorum, M. M., McMahon, B. J., Hagen, S., Mack, J., Blank, J., Wegner, H., & de Meijere, A. (2002). A rational chemical synthesis of C60. Science, 295, 1500–1503.Google Scholar
  244. Scuseria, G. E. (1996). Ab initio calculations of fullerenes. Science, 271, 942–945.Google Scholar
  245. Seiders, T. J., Elliot, E. L., Grube, G. H., & Siegel, J. S. (1999). Synthesis of corannulene and alkyl derivatives of corannulene. Journal of the American Chemical Society, 121, 7804–7813.Google Scholar
  246. Seiders, T. J., Baldridge, K. K., Grube, G. H., & Siegel, J. S. (2001). Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: Combined experimental and quantum mechanical analysis. Journal of the American Chemical Society, 123, 517–525.Google Scholar
  247. Serra, S., Cavazzoni, C., Chiarotti, G. L., Scandolo, S., & Tosatti, E. (1999). Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science, 284, 788–790.Google Scholar
  248. Shao, N., Gao, Y., Yoo, S., An, W., & Zeng, X. C. (2006). Search for lowest-energy fullerenes: C98 to C110. The Journal of Physical Chemistry. A, 110, 7672–7676.Google Scholar
  249. Shao, N., Gao, Y., & Zeng, X. C. (2007). Search for lowest-energy fullerenes 2: C38 to C80 and C112 to C120. The Journal of Physical Chemistry C, 111, 17671–17677.Google Scholar
  250. Shukla, M. K., & Leszczynski, J. (2009). Fullerene (C60) forms stable complex with nucleic acid base guanine. Chemical Physics Letters, 469, 207–209.Google Scholar
  251. Shustova, N. B., Kuvychko, I. V., Bolskar, R. D., Seppelt, K., Strauss, S. H., Popov, A. A., & Boltalina, O. V. (2006). Trifluoromethyl derivatives of insoluble small-HOMO-LUMO-Gap hollow higher fullerenes. NMR and DFT structure elucidation of C 2-(C74-D 3h)(CF3)12, C s-(C76-T d(2))(CF3)12, C 2-(C78-D 3h(5))(CF3)12, C s-(C80-C 2v(5))(CF3)12, and C 2-(C82-C 2(5))(CF3)12. Journal of the American Chemical Society, 128, 15793–15798.Google Scholar
  252. Shustova, N. B., Newell, B. S., Miller, S. M., Anderson, O. P., Bolskar, R. D., Seppelt, K., Popov, A. A., Boltalina, O. V., & Strauss, S. H. (2007). Discovering and verifying elusive fullerene cage isomers: Structures of C 2-p 11-(C74-D 3h)(CF3)12 and C 2-p 11-(C78-D 3h(5))(CF3)12. Angewandte Chemie, International Edition, 46, 4111–4114.Google Scholar
  253. Simeon, T. M., Yanov, I., & Leszczynski, J. (2005). Ab initio quantum chemical studies of fullerene molecules with substitutes C59X [X = Si, Ge, Sn], C59X [X = B, Al, Ga, In], and C59X [X = N, P, As, Sb]. International Journal of Quantum Chemistry, 105, 429–436.Google Scholar
  254. Sinha, N., & Yeow, J. T.-W. (2005). Carbon nanotubes for biomedical applications. IEEE Transactions on NanoBioscience, 4, 180–195.Google Scholar
  255. Sinnokrot, M. O., & Sherrill, C. D. (2004). Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped, and parallel-displaced configurations. The Journal of Physical Chemistry A, 108, 10200–10207.Google Scholar
  256. Slanina, Z., Zhao, X., Lee, S.-L., & Osawa, E. (1997). C90 temperature effects on relative stabilities of the IPR isomers. Chemical Physics, 219, 193–200.Google Scholar
  257. Slanina, Z., Uhlik, F., Yoshida, M., & Osawa, E. (2000a). A computational treatment of 35 IPR isomers of C88. Fullerene Science and Technology, 8, 417–432.Google Scholar
  258. Slanina, Z., Zhao, X., Deota, P., & Osawa, E. (2000b). Relative stabilities of C92 IPR fullerenes. Journal of Molecular Modeling, 6, 312–317.Google Scholar
  259. Smalley, R. E. (1992). Self-assembly of the fullerenes. Accounts of Chemical Research, 25, 98–105.Google Scholar
  260. Smith, B. W., Monthioux, M., & Luzzi, D. E. (1998). Encapsulated C60 in carbon nanotubes. Nature, 396, 323–324.Google Scholar
  261. Smith, B. W., Monthioux, M., & Luzzi, D. E. (1999). Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials. Chemical Physics Letters, 315, 31–36.Google Scholar
  262. Sofo, J. O., Chaudhari, A. S., & Barber, G. D. (2007). Graphane: A two-dimensional hydrocarbon. Physical Review B, 75, 153401-1–153401-4.Google Scholar
  263. Sotiropoulou, S., & Chaniotakis, N. A. (2003). Carbon nanotube array-based biosensor. Analytical and Bioanalytical Chemistry, 375, 103–105.Google Scholar
  264. Stevens, R. M. D., Frederick, N. A., Smith, B. L., Morse, D. E., Stucky, G. D., & Hansma, P. K. (2000). Carbon nanotubes as probes for atomic force microscopy. Nanotechnology, 11, 1–5.Google Scholar
  265. Stevens, R. M. D., Nguyen, C. V., & Meyyappan, M. (2004). Carbon nanotube scanning probe for imaging in aqueous environment. IEEE Transactions on NanoBioscience, 3, 56–60.Google Scholar
  266. Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209–220.Google Scholar
  267. Stoilova, O., Jérôme, C., Detrembleur, C., Mouithys-Mickalad, A., Manolova, N., Rashkova, I., & Jérôme, R. (2007). C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer, 48, 1835–1843.Google Scholar
  268. Stone, A. J., & Wales, D. J. (1986). Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters, 128, 501–503.Google Scholar
  269. Strano, M. S. (2003). Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. Journal of the American Chemical Society, 125, 16148–16153.Google Scholar
  270. Strano, M. S. (2007). Carbon nanotubes: Sorting out left from right. Nature Nanotechnology, 2, 340–341.Google Scholar
  271. Suchanek, W. L., Libera, J. A., Gogotsi, Y., & Yoshimura, M. (2001). Behavior of C60 under hydrothermal conditions: Transformation to amorphous carbon and formation of carbon nanotubes. Journal of Solid State Chemistry, 160, 184–188.Google Scholar
  272. Suenaga, K., Wakabayashi, H., Koshino, M., Sato, Y., Urita, K., & Iijima, S. (2007). Imaging active topological defects in carbon nanotubes. Nature Nanotechnology, 2, 358–360.Google Scholar
  273. Sulman, E., Yanov, I., & Leszczynski, J. (1999). An active site model and the catalytic activity mechanism of the new fullerene-based catalyst - (η2-C60)Pd(PPh3)2. Fullerenes, Nanotubes and Carbon Nanostructures, 7, 467–484.Google Scholar
  274. Sun, G. (2003). Assigning the major isomers of fullerene C88 by theoretical 13C NMR spectra. Chemical Physics Letters, 367, 26–33.Google Scholar
  275. Sun, G., & Kertesz, M. (2002). 13C NMR spectra for IPR isomers of fullerene C86. Chemical Physics, 276, 107–114.Google Scholar
  276. Suzuki, S., & Kobayashi, Y. (2007). Healing of low-energy irradiation-induced defects in single-walled carbon nanotubes at room temperature. The Journal of Physical Chemistry C, 111, 4524–4528.Google Scholar
  277. Sygula, A., & Rabideau, P. W. (1999). Non-pyrolytic syntheses of buckybowls: Corannulene, cyclopentacorannulene, and a semibuckminsterfullerene. Journal of the American Chemical Society, 121, 7800–7803.Google Scholar
  278. Tagmatarchis, N., Arcon, D., Prato, M., & Shinohara, H. (2002). Production, isolation and structural characterization of [92]fullerene isomers. Chemical Communications, 2992–2993.Google Scholar
  279. Tang, A. C., & Huang, F. Q. (1995). Electronic structures of giant fullerenes with Ih symmetry. Physical Review B, 51, 13830–13832.Google Scholar
  280. Tang, A. C., Li, Q. S., Liu, C. W., & Li, J. (1993). Symmetrical clusters of carbon and boron. Chemical Physics Letters, 201, 465–469.Google Scholar
  281. Taylor, R. (1992). The third form of carbon: A new era in chemistry. Interdisciplinary Science Reviews, 17, 161–170.Google Scholar
  282. Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, separation and characterisation of the fullerenes C60 and C70: The third form of carbon. Journal of the Chemical Society, Chemical Communications, 1423–1425.Google Scholar
  283. Taylor, R., Langley, G. J., Dennis, T. J. S., Kroto, H. W., & Walton, D. R. M. (1992). A mass spectrometric NMR study of fullerene-78 isomers. Journal of the Chemical Society, Chemical Communications, 1043–1046.Google Scholar
  284. Taylor, R., Langley, G. J., Avent, A. G., Dennis, T. J. S., Kroto, H. W., & Walton, D. R. M. (1993). 13C NMR spectroscopy of C76, C78, C84 and mixtures of C86-C102; anomalous chromatographic behaviour of C82, and evidence for C70H12. Journal of the Chemical Society, Perkin Transactions 2, 1029–1036.Google Scholar
  285. Terrones, M., Terrones, G., & Terrones, H. (2002). Structure, chirality, and formation of giant icosahedral fullerenes and spherical graphitic onions. Structural Chemistry, 13, 373–384.Google Scholar
  286. Thilgen, C., & Diederich, F. (2006). Structural aspects of fullerene chemistry - A journey through fullerene chirality. Chemical Reviews, 106, 5049–5135.Google Scholar
  287. Thrash, T. P., Cagle, D. W., Alford, J. M., Wright, K., Ehrhardt, G. J., Mirzadeh, S., & Wilson, L. J. (1999). Toward fullerene-based radiopharmaceuticals: High-yield neutron activation of endohedral 165Ho metallofullerenes. Chemical Physics Letters, 308, 329–336.Google Scholar
  288. Troshin, P. A., Avent, A. G., Darwish, A. D., Martsinovich, N., Abdul-Sada, A. K., Street, J. M., & Taylor, R. (2005). Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18. Science, 309, 278–281.Google Scholar
  289. Troyanov, S. I., & Tamm, N. B. (2009). Cage connectivities of C88 (33) and C92 (82) fullerenes captured as trifluoromethyl derivatives, C88(CF3)18 and C92(CF3)16. Chemical Communications, 6035–6037.Google Scholar
  290. Valsakumar, M. C., Subramanian, N., Yousuf, M., Sahu, P. Ch., Hariharan, Y., Bharathi, A., Sastry, V. S., Janaki, J., Rao, G. V. N., Radhakrishnan, T. S., & Sundar, C. S. (1993). Crystal structure and disorder in solid C70. Physical Review B, 48, 9080–9085.Google Scholar
  291. Velasco-Santos, C., Martínez-Hernández, A. L., Consultchi, A., Rodríguez, R., & Castaño, V. M. (2003). Naturally produced carbon nanotubes. Chemical Physics Letters, 373, 272–276.Google Scholar
  292. Vostrowsky, O., & Hirsch, A. (2004). Molecular peapods as supramolecular carbon allotropes. Angewandte Chemie, International Edition, 43, 2326–2329.Google Scholar
  293. Wahl, F., Worth, J., & Prinzbach, H. (1993). The pagodane route to dodecahedranes: An improved approach to the C20H20 parent framework; partial and total functionalizations - Does C20-fullerene exist? Angewandte Chemie (International Edition in English), 32, 1722–1726.Google Scholar
  294. Wanbayor, R., & Ruangpornvisuti, V. (2008). Theoretical study of adsorption of C1-C3 alkoxides on various cap-ended and open-ended armchair (5,5) single-walled carbon nanotubes. Carbon, 46, 12–18.Google Scholar
  295. Wang, G.-W., Zhang, X.-H., Zhan, H., Guo, Q.-X., & Wu, Y.-D. (2003). Accurate calculation, prediction, and assignment of 3He NMR chemical shifts of Helium-3-encapsulated fullerenes and fullerene derivatives. Journal of Organic Chemistry, 68, 6732–6738.Google Scholar
  296. Wang, C., Zhou, G., Liu, H., Wu, J., Qiu, Y., Gu, B.-L., & Duan, W. (2006). Chemical functionalization of carbon nanotubes by carboxyl groups on Stone-Wales defects: A density functional theory study. The Journal of Physical Chemistry. B, 110, 10266–10271.Google Scholar
  297. Wang, X., Tabakman, S. M., & Dai, H. (2008). Atomic layer deposition of metal oxides on pristine and functionalized graphene. Journal of the American Chemical Society, 130, 8152–8153.Google Scholar
  298. WenXing, B., ChangChun, Z., & WanZhao, C. (2004). Simulation of Youngs modulus of single-walled carbon nanotubes by molecular dynamics. Physica B, 352, 156–163.Google Scholar
  299. Woodward, R. B., & Hoffmann, R. (1969). The conservation of orbital symmetry. Angewandte Chemie (International Edition in English), 8, 781–853.Google Scholar
  300. Wu, J., & Hagelberg, F. (2008). Computational study on C80 enclosing mixed trimetallic nitride clusters of the form GdxM3 − xN (M = Sc, Sm, Lu). The Journal of Physical Chemistry C, 112, 5770–5777.Google Scholar
  301. Wu, Y.-T., & Siegel, J. S. (2006). Aromatic molecular-bowl hydrocarbons: Synthetic derivatives, their structures, and physical properties. Chemical Reviews, 106, 4843–4867. and references therein.Google Scholar
  302. Wu, X., & Zeng, X. C. (2009). Periodic graphene nanobuds. Nano Letters, 9, 250–256.Google Scholar
  303. Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4, 505–509.Google Scholar
  304. Xie, S.-Y., Gao, F., Lu, X., Huang, R.-B., Wang, C.-R., Zhang, X., Liu, M.-L., Deng, S.-L., & Zheng, L.-S. (2004). Capturing the labile fullerene[50] as C50Cl10. Science, 304, 699.Google Scholar
  305. Yakobson, B. I., Brabec, C. J., & Bernholc, J. (1996). Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 76, 2511–2514.Google Scholar
  306. Yamada, M., Nakahodo, T., Wakahara, T., Tsuchiya, T., Maeda, Y., Akasaka, T., Kako, M., Yoza, K., Horn, E., Mizorogi, N., Kobayashi, K., & Nagase, S. (2005). Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. Journal of the American Chemical Society, 127, 14570–14571.Google Scholar
  307. Yamada, M., Akasaka, T., & Nagase, S. (2010). Endohedral metal atoms in pristine and functionalized fullerene cages. Accounts of Chemical Research, 43, 92–102.Google Scholar
  308. Yang, S. H., Shin, W. H., Lee, J. W., Kim, S. Y., Woo, S. I., & Kang, J. K. (2006a). Interaction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes. The Journal of Physical Chemistry B, 110, 13941–13946.Google Scholar
  309. Yang, S. H., Shin, W. H., & Kang, J. K. (2006b). Ni adsorption on Stone-Wales defect sites in single-wall carbon nanotubes. Journal of Chemical Physics, 125, 084705-1–084705-5.Google Scholar
  310. Yang, F. H., Lachawiec, A. J., Jr., & Yang, R. T. (2006c). Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. The Journal of Physical Chemistry. B, 110, 6236–6244.Google Scholar
  311. Yanov, I., Leszczynski, J., Sulman, E., Matveeva, V., & Semagina, N. (2004). Modeling of the molecular structure and catalytic activity of the new fullerene-based catalyst (η2-C60)Pd(PPh3)2: An application in the reaction of selective hydrogenation of acetylenic alcohols. International Journal of Quantum Chemistry, 100, 810–817.Google Scholar
  312. Yumura, T., Nozaki, D., Bandow, S., Yoshizawa, K., & Iijima, S. (2005a). End-cap effects on vibrational structures of finite-length carbon nanotubes. Journal of the American Chemical Society, 127, 11769–11776.Google Scholar
  313. Yumura, T., Sato, Y., Suenaga, K., & Iijima, S. (2005b). Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? A theoretical study. The Journal of Physical Chemistry. B, 109, 20251–20255.Google Scholar
  314. Yumura, T., Kertesz, M., & Iijima, S. (2007). Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes. The Journal of Physical Chemistry. B, 111, 1099–1109.Google Scholar
  315. Zhang, J., & Zuo, J. M. (2009). Structure and diameter-dependent bond lengths of a multi-walled carbon nanotube revealed by electron diffraction. Carbon, 47, 3515–3528.Google Scholar
  316. Zhang, B. L., Wang, C. Z., Ho, K. M., Xu, C. H., & Chan, C. T. (1993). The geometry of large fullerene cages: C72 to C102. Journal of Chemical Physics, 98, 3095–3102.Google Scholar
  317. Zhang, G., Qi, P., Wang, X., Lu, Y., Mann, D., Li, X., & Dai, H. (2006). Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 6026–6027.Google Scholar
  318. Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., & Gu, Z. (2008). Influence of ethylene and hydrogen flow rates on the wall number, Crystallinity, and length of millimeter-long carbon nanotube array. The Journal of Physical Chemistry C, 112, 12706–12709 and references therein.Google Scholar
  319. Zhao, K., & Pitzer, R. M. (1996). Electronic structure of C28, Pa@C28, and U@C28. Journal of Physical Chemistry, 100, 4798–4802.Google Scholar
  320. Zhao, Y., & Truhlar, D. G. (2007). Size-selective supramolecular chemistry in a hydrocarbon nanoring. Journal of the American Chemical Society, 129, 8440–8442.Google Scholar
  321. Zhao, Y., & Truhlar, D. G. (2008). Computational characterization and modeling of buckyball tweezers: Density functional study of concave convex interactions. Physical Chemistry Chemical Physics, 10, 2813–2818.Google Scholar
  322. Zhao, X., Slanina, Z., & Goto, H. (2004a). Theoretical studies on the relative stabilities of C96 IPR fullerenes. The Journal of Physical Chemistry A, 108, 4479–4484.Google Scholar
  323. Zhao, X., Goto, H., & Slanina, Z. (2004b). C100 IPR fullerenes: Temperature-dependent relative stabilities based on the Gibbs function. Chemical Physics, 306, 93–104.Google Scholar
  324. Zhou, Z., Steigerwald, M., Hybertsen, M., Brus, L., & Friesner, R. A. (2004). Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube. Journal of the American Chemical Society, 126, 3597–3607.Google Scholar
  325. Zhou, L., Gao, C., Zhu, D. D., Xu, W., Chen, F. F., Palkar, A., Echegoyen, L., & Kong, E. S.-W. (2009). Facile functionalization of multilayer fullerenes (carbon nanoonions) by nitrene chemistry and grafting from strategy. Chemistry - A European Journal, 15, 1389–1396.Google Scholar
  326. Zhu, Z. H., Hatori, H., Wang, S. B., & Lu, G. Q. (2005). Insights into hydrogen atom adsorption on and the electrochemical properties of nitrogen-substituted carbon materials. The Journal of Physical Chemistry. B, 109, 16744–16749.Google Scholar
  327. Zope, R. R., Baruah, T., Pederson, M. R., & Dunlap, B. I. (2008). Static dielectric response of icosahedral fullerenes from C60 to C2160 characterized by an all-electron density functional theory. Physical Review B, 77, 115452-1–115452-5.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tandabany C. Dinadayalane
  • Jerzy Leszczynski

There are no affiliations available

Personalised recommendations