Advertisement

Molecular Electric, Magnetic, and Optical Properties

  • Michał Jaszuński
  • Antonio Rizzo
  • Kenneth Ruud
Reference work entry

Abstract

The theory and applications of ab initio methods for the calculation of molecular properties are reviewed. A wide range of properties characterizing the interactions of molecules with external or internal sources of static or dynamic electromagnetic fields (including nonlinear properties and those related to nuclear and electron spins) is considered. Emphasis is put on the properties closely connected to the parameters used to describe experimentally observed spectra. We discuss the definitions of these properties, their relation to experiment, and give some remarks regarding various computational aspects. Theory provides a unified approach to the analysis of molecular properties in terms of average values, transition moments, and linear and nonlinear responses to the perturbing fields. Several literature examples are given, demonstrating that theoretical calculations are becoming easier, and showing that computed ab initio molecular properties are in many cases more accurate than those extracted from experimentally observed data.

Keywords

Electron Spin Resonance Electric Field Gradient Multipole Moment Magnetic Circular Dichroism Spin Coupling Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Dr. Stephan Sauer and to Dr. Olav Vahtras for many helpful comments. We are indebted to Dr. Anna Kaczmarek-Kędziera for help in the editing of the manuscript.

References

  1. Abragam, A. (1961). The principles of nuclear magnetic resonance. Oxford: Oxford University Press.Google Scholar
  2. Anet, F. A. L., O’Leary, D. J., Wade, C. G., & Johnson, R. D. (1990). NMR relaxation by the antisymmetric component of the shielding tensor: A longer transverse than longitudinal relaxation time. Chemical Physics Letters, 171, 401.Google Scholar
  3. Arbuznikov, A. V., Vaara, J., & Kaupp, M. (2004). Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory. Journal of Chemical Physics, 120, 2127.Google Scholar
  4. Aucar, G. A. (2008). Understanding NMR J-couplings by the theory of polarization propagators. Concepts in Magnetic Resonance Part A, 32, 88.Google Scholar
  5. Auer, A. A., Gauss, J., & Stanton, J. F. (2003). Quantitative prediction of gas-phase 13C nuclear magnetic shielding constants. Journal of Chemical Physics, 118, 10407.Google Scholar
  6. Autschbach, J. (2007). Density functional theory applied to calculating optical and spectroscopic properties of metal complexes: NMR and optical activity. Coordination Chemistry Reviews, 251, 1796.Google Scholar
  7. Autschbach, J. (2008). Two-component relativistic hybrid density functional computations of nuclear spin–spin coupling tensors using Slater-type basis sets and density-fitting techniques. Journal of Chemical Physics, 129, 094105. Erratum: 130, 209901 (2009).Google Scholar
  8. Bak, K. L., Gauss, J., Helgaker, T., Jørgensen, P., & Olsen, J. (2000). The accuracy of molecular dipole moments in standard electronic structure calculations. Chemical Physics Letters, 319, 563.Google Scholar
  9. Baker, J., Buckingham, A. D., Fowler, P. W., Steiner, E., Lazzeretti, P., & Zanasi, R. (1989). The electrostatic model of field gradients at nuclei – an application to hydrogen-bonded complexes of HCl. Journal of the Chemical Society, Faraday Transactions 2, 85, 901.Google Scholar
  10. Barone, V. (1995). Structure, magnetic properties and reactivities of open-shell species from density functional and self-consistent hybrid methods. In D. P. Chong (Ed.), Recent advances in density functional methods (Vol. 1, p. 287). Singapore: World Scientific.Google Scholar
  11. Barron, L. D. (2004). Molecular light scattering and optical activity. Cambridge: Cambridge University Press.Google Scholar
  12. Barron, L. D., & Vrbancich, J. (1984). Magneto-chiral birefringence and dichroism. Molecular Physics, 51, 715.Google Scholar
  13. Benedikt, U., Auer, A. A., & Jensen, F. (2008). Optimization of augmentation functions for correlated calculations of spin-spin coupling constants and related properties. Journal of Chemical Physics, 129, 064111.Google Scholar
  14. Benkova, Z., Sadlej, A. J., Oakes, R. E., & Bell, S. E. J. (2005). Reduced-size polarized basis sets for calculations of molecular electric properties. I. The basis set generation. Journal of Computational Chemistry, 26, 145.Google Scholar
  15. Bethe, H., & Salpeter, E. (1957). Quantum mechanics of one- and two-electron atoms. New York: Academic.Google Scholar
  16. Bishop, D. M. (1990). Molecular vibrational and rotational motion in static and dynamic electric fields. Reviews of Modern Physics, 62, 343.Google Scholar
  17. Bishop, D. M. (1995). Dispersion formula for the average first hyperpolarizability β. Journal of Chemical Physics, 95, 5489.Google Scholar
  18. Bishop, D. M., & Pipin, J. (1989). Improved dynamic hyperpolarizabilities and field-gradient polarizabilities for helium. Journal of Chemical Physics, 91, 3549.Google Scholar
  19. Bogaard, M. P., & Orr, B. J. (1975). Electric Dipole Polarizabilities of Atoms and Molecules. In A. D. Buckingham (Ed.), International review of science, physical chemistry, molecular structure, and properties, series 2 (Vol. 2, p. 149). London: Butterworths.Google Scholar
  20. B¨ohm, M. C., Ramirez, R., & Schulte, J. (2007). On the influence of vibrational modes and intramolecular isomerization processes on the NMR parameters of bullvalene: A Feynman path integral – ab initio investigation. Chemical Physics, 342, 1.Google Scholar
  21. Bolvin, H. (2006). An alternative approach to the g-matrix: Theory and applications. ChemPhysChem, 7, 1575.Google Scholar
  22. Bonin, K. D., & Kresin, V. V. (1997). Electric-dipole polarizabilities of atoms, molecules and clusters. Singapore: World Scientific.Google Scholar
  23. Born, M. (1918). Elektronentheorie des nat¨urlichen optischen Drehungsverm¨ogens isotroper und anisotroper Fl¨ussigkeiten. Annalen der Physik, 55, 177.Google Scholar
  24. Buckingham, A. D. (1959). Direct method of measuring molecular quadrupole moments. Journal of Chemical Physics, 30, 1580.Google Scholar
  25. Buckingham, A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics, 12, 107.Google Scholar
  26. Buckingham, A. D., & Disch, R. L. (1963). The quadrupole moment of the carbon dioxide molecule. Proceedings of the Royal Society A, 273, 275.Google Scholar
  27. Buckingham, A. D., & Longuet-Higgins, H. C. (1968). The quadrupole moments of dipolar molecules. Molecular Physics, 14, 63.Google Scholar
  28. Buckingham, A. D., & Love, I. (1970). Theory of the anisotropy of nuclear spin coupling. Journal of Magnetic Resonance, 2, 338.Google Scholar
  29. Buckingham, A. D., & Pople, J. A. (1956). A theory of magnetic double refraction. Proceedings of the Physical Society, Section B, 69, 1133.Google Scholar
  30. Buckingham, A. D., & Stephens, P. J. (1966). Magnetic optical activity. Annual Review of Physical Chemistry, 17, 399.Google Scholar
  31. Buckingham, A. D., Pyykk¨o, P., Robert, J. B., & Wiesenfeld, L. (1982). Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited. Molecular Physics, 46, 177.Google Scholar
  32. Champagne, B., Perp´ete, E. A., Jacquemin, D., van Gisbergen S. J. A., Baerends, E. J., Soubra-Ghaoui, C., Robins, K. A., & Kirtman, B. (2000). Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push–pull π-conjugated systems. Journal of Physical Chemistry A, 104, 4755.Google Scholar
  33. Christiansen, O., Koch, H., & Jørgensen, P. (1995). The second-order approximate coupled cluster singles and doubles model CC2. Chemical Physics Letters, 243, 409.Google Scholar
  34. Christiansen, O., Jørgensen, P., & H¨attig, C. (1998). Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy. International Journal of Quantum Chemistry, 68, 1.Google Scholar
  35. Christiansen, O., Coriani, S., Gauss, J., H¨attig, C., Jørgensen, P., Pawłowski, F., & Rizzo, A. (2006). Accurate nonlinear optical properties for small molecules. In M. G. Papadopoulos, A. J. Sadlej, & J. Leszczynski (Eds.), Non-linear optical properties of matter: From molecules to condensed phases (p. 51). Dordrecht: Springer.Google Scholar
  36. Ciofini, I., Adamo, C., & Barone, V. (2004). Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: Glycyl radical as a case study. Journal of Chemical Physics, 121, 6710.Google Scholar
  37. Coriani, S., H¨attig, C., & Rizzo, A. (1999 a). The electric-field-gradient-induced birefringence of helium, neon, argon, and SF6. Journal of Chemical Physics, 111, 7828.Google Scholar
  38. Coriani, S., Jørgensen, P., Rizzo, A., Ruud, K., & Olsen, J. (1999 b). Ab initio determinations of magnetic circular dichroism. Chemical Physics Letters, 300, 61.Google Scholar
  39. Craig, D. P., & Thirunamachandran, T. (1984). Molecular quantum electrodynamics. An introduction to radiation molecule interaction. Mineola: Dover Publications, Inc.Google Scholar
  40. Cronstrand, P., Luo, Y., Norman, P., & ˚ Agren, H. (2003). Ab initio calculations of three-photon absorption. Chemical Physics Letters, 375, 233.Google Scholar
  41. Cybulski, S. M., & Bishop, D. M. (1994). Calculations of magnetic properties. V. Electron-correlated hypermagnetizabilities (Cotton–Mouton effect) for H2, N2, HF, and CO. Journal of Chemical Physics, 101, 424.Google Scholar
  42. De Boni, L., Toro, C., & Hern´andez, F. E. (2008). Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules. Optics Letters, 33, 2958.Google Scholar
  43. Drake, G. W. F. (2006). High precision calculations for helium. In G. W. F. Drake (Ed.), Springer handbook of atomic, molecular and optical physics (p. 199). New York: Springer.Google Scholar
  44. Dyall, K. G., & Faegri, K., Jr. (2007). Introduction to relativistic quantum chemistry. USA: Oxford University Press.Google Scholar
  45. Enevoldsen, T., Oddershede, J., & Sauer, S. P. A. (1998). Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD). Theoretical Chemistry Accounts, 100, 275.Google Scholar
  46. Engstr¨om, M., Minaev, B., Vahtras, O., & ˚ Agren, H. (1998). Linear response calculations of electronic g-factors and spin-rotational coupling constants for diatomic molecules with a triplet ground state. Chemical Physics, 237, 149.Google Scholar
  47. Faraday, M. (1846 a). XLIX. Experimental researches in electricity. Nineteenth series. Philosophical Magazine, 28, 294.Google Scholar
  48. Faraday, M. (1846 b). Experimental researches in electricity. Nineteenth series. Philosophical Transactions of the Royal Society of London, 136, 1.Google Scholar
  49. Fernandez, B., Jørgensen, P., Byberg, J., Olsen, J., Helgaker, T., & Jensen, H. J. Aa. (1992). Spin polarization in restricted electronic structure theory: Multiconfiguration self-consistent-field calculations of hyperfine coupling constants. Journal of Chemical Physics, 97, 3412.Google Scholar
  50. Fernandez, B., Christiansen, O., Jørgensen, P., Byberg, J., Gauss, J., & Ruud, K. (1997). Hyperfine and nuclear quadrupole coupling in chlorine and fluorine dioxides. Journal of Chemical Physics, 106, 1847.Google Scholar
  51. Flygare, W. H. (1974). Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters. Chemical Reviews, 74, 653.Google Scholar
  52. Fowler, P. W., & Buckingham, A. D. (1989). The magnetic hyperpolarizability anisotropy of some two-electron systems. Molecular Physics, 67, 681.Google Scholar
  53. Fowler, P. W., Lazzeretti, P., Steiner, E., & Zanasi, R. (1989). The theory of Sternheimer shielding in molecules in external fields. Chemical Physics, 133, 221.Google Scholar
  54. Fowler, P. W., Hunt, K. L. C., Kelly, H. M., & Sadlej, A. J. (1994). Multipole polarizabilities of the helium atom and collision-induced polarizabilities of pairs containing He or H atoms. Journal of Chemical Physics, 100, 2932.Google Scholar
  55. Fukui, H., Baba, T., & Inomata, H. (1996). Calculation of nuclear magnetic shieldings. X. Relativistic effects. Journal of Chemical Physics, 105, 3175. Erratum: 106, 2987 (1997).Google Scholar
  56. Gauss, J., & Stanton, J. F. (1995). Coupled-cluster calculations of nuclear magnetic resonance chemical shifts. Journal of Chemical Physics, 103, 3561.Google Scholar
  57. Gauss, J., & Stanton, J. F. (2002). Electron-correlated approaches for the calculation of NMR chemical shifts. Advances in Chemical Physics, 123, 355.Google Scholar
  58. Gauss, J., Ruud, K., & Helgaker, T. (1996). Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. Journal of Chemical Physics, 105, 2804.Google Scholar
  59. Gauss, J., Ruud, K., & K´allay, M. (2007). Gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster level. Journal of Chemical Physics, 127, 074101.Google Scholar
  60. Geurts, P. J. M., Bouten, P. C. P., & van der Avoird, A. (1980). Hartree–Fock–Slater–LCAO calculations on the Cu(II) bis(dithiocarbamate) complex; Magnetic coupling parameters and optical spectrum. Journal of Chemical Physics, 73, 1306.Google Scholar
  61. Giorgio, E., Viglione, R., Zanasi, R., & Rosini, C. (2004). Ab initio calculation of optical rotatory dispersion (ORD) curves: A simple and reliable approach to the assignment of the molecular absolute configuration. Journal of the American Chemical Society, 126, 12968.Google Scholar
  62. Hansen, A. E., & Bouman, T. D. (1980). Natural chiroptical spectroscopy: Theory and computations. Advances in Chemical Physics, 44, 545.Google Scholar
  63. Harding, M. E., Lenhart, M., Auer, A. A., & Gauss, J. (2008 a). Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants. Journal of Chemical Physics, 128, 244111.Google Scholar
  64. Harding, M. E., Metzroth, T., Gauss, J., & Auer, A. A. (2008 b). Parallel calculation of CCSD and CCSD(T) analytic first and second derivatives. Journal of Chemical Theory and Computation, 4, 64.Google Scholar
  65. Harriman, J. E. (1978). Theoretical foundations of electron spin resonance. New York: Academic.Google Scholar
  66. H¨attig, C., Christiansen, O., & Jørgensen, P. (1998 a). Multiphoton transition moments and absorption cross sections in coupled cluster response theory employing variational transition moment functionals. Journal of Chemical Physics, 108, 8331.Google Scholar
  67. H¨attig, C., Christiansen, O., & Jørgensen, P. (1998 b). Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon. Journal of Chemical Physics, 108, 8355.Google Scholar
  68. H¨attig, C., & Jørgensen, P. (1998). Dispersion coefficients for first hyperpolarizabilities using coupled cluster quadratic response theory. Theoretical Chemistry Accounts, 100, 230.Google Scholar
  69. Helgaker, T., Ruud, K., Bak, K. L., Jørgensen, P., & Olsen, J. (1994). Vibrational Raman optical-activity calculations using London atomic orbitals. Faraday Discussions, 99, 165.Google Scholar
  70. Helgaker, T., Jaszuński, M., & Ruud, K. (1997). Ab initio calculation of the NMR shielding and indirect spin–spin coupling constants of fluoroethylene. Molecular Physics, 91, 881.Google Scholar
  71. Helgaker, T., Jaszuński, M., & Ruud, K. (1999). Ab initio methods for the calculation of NMR shielding and indirect spin–spin coupling constants. Chemical Reviews, 99, 293.Google Scholar
  72. Helgaker, T., Jørgensen, P., & Olsen, J. (2000). Molecular electronic-structure theory. Chichester: Wiley.Google Scholar
  73. Helgaker, T., Jaszuński, M., & Pecul, M. (2008). The quantum-chemical calculation of NMR indirect spin-spin coupling constants. Progress in Nuclear Magnetic Resonance Spectroscopy, 53, 249.Google Scholar
  74. Hess, B. A., Marian, C. M., Wahlgren, U., & Gropen, O. (1996). A mean-field spin-orbit method applicable to correlated wavefunctions. Chemical Physics Letters, 251, 365.Google Scholar
  75. Jackowski, K., Wilczek, M., Pecul, M., & Sadlej, J. (2000). Nuclear magnetic shielding and spin-spin coupling of 1,2-13C-enriched acetylene in gaseous mixtures with xenon and carbon dioxide. Journal of Physical Chemistry A, 104, 5955. Erratum: 104, 9806 (2000).Google Scholar
  76. Jackowski, K., Makulski, W., & Wasylishen, R. E. (2011). To be published.Google Scholar
  77. Jackson, D. A. (1998). Classical electrodynamics (3rd ed.). New York: Wiley.Google Scholar
  78. Jameson, C. J. (1987). Spin–spin coupling. In J. Mason (Ed.), Multinuclear NMR (p. 89). New York: Plenum Press.Google Scholar
  79. Jameson, C. J., Jameson, A. K., Oppusunggu, D., Wille, S., Burrell, P. M., & Mason, J. (1981). 15N nuclear magnetic shielding scale from gas phase studies. Journal of Chemical Physics, 74, 81.Google Scholar
  80. Jamieson, M. J. (1991). A time-dependent Hartree–Fock study of dispersion in the Cotton–Mouton effect for the helium isoelectronic sequence. Chemical Physics Letters, 183, 9.Google Scholar
  81. Jans´ık, B., Rizzo, A., & ˚ Agren, H. (2005). Response theory calculations of two-photon circular dichroism. Chemical Physics Letters, 414, 461.Google Scholar
  82. Jans´ık, B., Rizzo, A., & ˚ Agren, H. (2007). Ab initio study of the two-photon circular dichroism in chiral natural amino acids. The Journal of Physical Chemistry B, 111, 446. Erratum: 111, 2409 (2007).Google Scholar
  83. Jaszuński, M. (2004). Ab initio study of the shielding and spin–spin coupling constants in ClF3, PF3 and PF5. Chemical Physics Letters, 385, 122.Google Scholar
  84. Jaszuński, M. (2004). Ab initio study of the shielding and spin–spin coupling constants in ClF3, PF3 and PF5. Chemical Physics Letters, 385, 122.Google Scholar
  85. Jaszuński, M., & Jackowski, K. (2008). Nuclear magnetic dipole moments from NMR spectra – quantum chemistry and experiment. In S. G. Karshenboim (Ed.), Precision physics of simple atoms and molecules. Lecture notes in physics (Vol. 745, p. 233). Springer, Berlin, Heidelberg.Google Scholar
  86. Jaszuński, M., & Ruud, K. (2001). Spin–spin coupling constants in C2H2. Chemical Physics Letters, 336, 473.Google Scholar
  87. Jaszuński,M.,Jørgensen,P.,Rizzo,A.,Ruud,K.,&Helgaker,T.(1994).MCSCF calculations of Verdet constants. Chemical Physics Letters, 222, 263.Google Scholar
  88. Jensen, F. (2006). The basis set convergence of spin-spin coupling constants calculated by density functional methods. Journal of Chemical Theory and Computation, 2, 1360.Google Scholar
  89. Jensen, F. (2008). Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. Journal of Chemical Theory and Computation, 4, 719.Google Scholar
  90. Kacprzak, S., & Kaupp, M. (2004). Electronic g-tensors of semiquinones in photosynthetic reaction centers. A density functional study. The Journal of Physical Chemistry B, 108, 2464.Google Scholar
  91. K´allay, M., & Gauss, J. (2004). Analytic second derivatives for general coupled-cluster and configuration-interaction models. Journal of Chemical Physics, 120, 6841.Google Scholar
  92. Kalugin, N. K., Kleindienst, P., & Wagni`ere, G. H. (1999). The magnetochiral birefringence in diamagnetic solutions and in uniaxial crystals. Chemical Physics, 248, 105.Google Scholar
  93. Kaupp, M. (2004). Relativistic effects on NMR chemical shifts. In P. Schwerdtfeger (Ed.), Relativistic electronic structure theory. Part 2. Applications (p. 552). Amsterdam: Elsevier.Google Scholar
  94. Keal, T. W., & Tozer, D. J. (2003). The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculations. Journal of Chemical Physics, 119, 3015.Google Scholar
  95. Kell¨o, V., & Sadlej, A. J. (1998). The quadrupole moment of the 39K and 41K nuclei from microwave data for KF and KCl. Chemical Physics Letters, 292, 403.Google Scholar
  96. Kendall, R. A., Dunning, T. H., Jr.,& Harrison, R. J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 96, 6796.Google Scholar
  97. Kerr, J. (1875 a). XL. A new relation between electricity and light: Dielectrified media birefringent. Philosophical Magazine, 50, 337.Google Scholar
  98. Kerr, J. (1875 b). LIV. A new relation between electricity and light: Dielectrified media birefringent (second paper). Philosophical Magazine, 50, 446.Google Scholar
  99. Kielich, S. (1972). General molecular theory and electric field effects in isotropic dielectrics. In M. Davies (Ed.), Specialist periodical report, dielectric and related molecular processes (Vol. 1, p. 192). London: Chemical Society.Google Scholar
  100. Kirpekar, S., Oddershede, J., & Jensen, H. J. Aa. (1995). Relativistic corrections to molecular dynamic dipole polarizabilities. Journal of Chemical Physics, 103, 2983.Google Scholar
  101. Kirtman, B., Champagne, B., & Luis, J. M. (2000). Efficient treatment of the effect of vibrations on electrical, magnetic, and spectroscopic properties. Journal of Computational Chemistry, 21, 1572.Google Scholar
  102. Kleinman, D. A. (1972). Nonlinear dielectric polarization in optical media. Physical Review, 126, 1977.Google Scholar
  103. Koch, H., Christiansen, O., Jørgensen, P., S´anchez de Mer´as, A. M. J., & Helgaker, T. (1997). The CC3 model: An iterative coupled cluster approach including connected triples. Journal of Chemical Physics, 106, 1808.Google Scholar
  104. Kosegi, S., Gordon, M. S., Schmidt, M. W., & Matsunaga, N. (1995). Main group effective nuclear charges for spin-orbit calculations. Journal of Physical Chemistry, 99, 12764.Google Scholar
  105. Krivdin, L. B., & Contreras, R. H. (2007). Recent advances in theoretical calculations of indirect spin-spin coupling constants. In Annual Reports on NMR Spectroscopy (Vol. 61, p. 133).Google Scholar
  106. Kukolich, S. G. (1969). Measurement of the molecular g values in H2O and D2O and hyperfine structure in H2O. Journal of Chemical Physics, 50, 3751.Google Scholar
  107. Kussmann, J., & Ochsenfeld, C. (2007). Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree–Fock and density-functional theory. Journal of Chemical Physics, 127, 054103.Google Scholar
  108. Kutzelnigg, W. (1980). Theory of magnetic-susceptibilities and NMR chemical shifts in terms of localized quantities. Israel Journal of Chemistry, 19, 193.Google Scholar
  109. Łach, G., Jeziorski, B., & Szalewicz, K. (2004). Radiative corrections to the polarizability of helium. Physical Review Letters, 92, 233001.Google Scholar
  110. Langevin, P. (1910). Sur les bir´efringences ´electrique et magn´etique. Radium, Paris, 7, 249.Google Scholar
  111. Langhoff, P. W., & Karplus, M. (1970). Application of Pad´e approximants to dispesion force and optical polarizability computations. In G. A. Baker Jr, J. L. Gammel (Eds.), The Pad´e approximant in theoretical physics (pp. 41–97). New York: Academic.Google Scholar
  112. Langhoff, P. W., Gordon, R. G., & Karplus, M. (1971). Comparisons of dispersion force bounding methods with applications to anisotropic interactions. Journal of Chemical Physics, 55, 2126.Google Scholar
  113. Lazzeretti, P., & Zanasi, R. (1996). Molecular magnetic properties via formal annihilation of paramagnetic contribution to electronic current density. International Journal of Quantum Chemistry, 60, 249.Google Scholar
  114. Lazzeretti, P., Malagoli, M., & Zanasi, R. (1994). Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density. Chemical Physics Letters, 220, 299.Google Scholar
  115. L¨owdin, P.-O., & Goscinski, O. (1999). Studies in perturbation theory. XIV. Treatment of constants of motion, degeneracies and symmetry properties by means of multidimensional partitioning. International Journal of Quantum Chemistry, 5, 685.Google Scholar
  116. Lushington, G. H., & Grein, F. (1996). The electronic g-tensor of MgF: A comparison of ROHF and MRD–CI level results. International Journal of Quantum Chemistry, 60, 1679.Google Scholar
  117. Lutnæs, O. B., Teale, A. M., Helgaker, T., Tozer, D. J., Ruud, K., & Gauss, J. (2009). Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations. Journal of Chemical Physics, 131, 144104.Google Scholar
  118. Maldonado, A. F., & Aucar, G. A. (2009). The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms. Physical Chemistry Chemical Physics, 11, 5615.Google Scholar
  119. Manninen, P., Lantto, P., Vaara, J., & Ruud, K. (2003). Perturbational ab initio calculations of relativistic contributions to nuclear magnetic resonance shielding tensors. Journal of Chemical Physics, 119, 2623.Google Scholar
  120. Marchesan, D., Coriani, S., Forzato, C., Nitti, P., Pitacco, G., & Ruud, K. (2005). Optical rotation calculation of a highly flexible molecule: The case of paraconic acid. Journal of Physical Chemistry A, 109, 1449.Google Scholar
  121. Mason, J. (1993). Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the NATO ARW on NMR shielding constants at the University of Maryland, College Park, July 1992. Solid State Nuclear Magnetic Resonance, 2, 285.Google Scholar
  122. McClain, W. M. (1974). Two-photon molecular spectroscopy. Accounts of Chemical Research, 7, 129.Google Scholar
  123. McWeeny, R. (1992). Methods of molecular quantum mechanics (2nd ed.). London: Academic.Google Scholar
  124. Mennucci, B., & Cammi, R. (2007). Continuum solvation models in chemical physics: From theory to applications. Chichester: Wiley.Google Scholar
  125. Michl, J., & Thulstrup, E. W. (1995). Spectroscopy with polarized light. Weinheim: VCH.Google Scholar
  126. Minaev, B., Loboda, O., Rinkevicius, Z., Vahtras, O., & ˚ Agren, H. (2003). Fine and hyperfine structure in three low-lying 3Σ + states of molecular hydrogen. Molecular Physics, 101, 2335.Google Scholar
  127. Misquitta, A. J., Podeszwa, R., Jeziorski, B., & Szalewicz, K. (2005). Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. Journal of Chemical Physics, 123, 214103.Google Scholar
  128. Møgelhøj, A., Aidas, K., Mikkelsen, K. V., & Kongsted, J. (2008). Solvent effects on the nitrogen NMR shielding and nuclear quadrupole coupling constants in 1-methyltriazoles. Chemical Physics Letters, 460, 129.Google Scholar
  129. Møgelhøj, A., Aidas, K., Mikkelsen, K. V., Sauer, S. P. A., & Kongsted, J. (2009). Prediction of spin-spin coupling constants in solution based on combined density functional theory/molecular mechanics. Journal of Chemical Physics, 130, 134508.Google Scholar
  130. Moss, R. E. (1973). Advanced molecular quantum mechanics. London: Chapman and Hall.Google Scholar
  131. M¨uller, T., Wiberg, K. B., & Vaccaro, P. H. (2000). Cavity ring-down polarimetry (CRDP): A new scheme for probing circular birefringence and circular dichroism in the gas phase. Journal of Physical Chemistry A, 104, 5959.Google Scholar
  132. Neese, F. (2003). Metal and ligand hyperfine couplings in transition metal complexes: The effect of spin–orbit coupling as studied by coupled perturbed Kohn–Sham theory. Journal of Chemical Physics, 118, 3939.Google Scholar
  133. Neese, F., & Solomon, E. I. (2003). Interpretation and calculation of spin-Hamiltonian parameters in transition metal complexes. In J. S. Miller, & M. Drillon (Eds.), Magnetism: Molecules to materials IV (p. 345). Weinheim: Wiley.Google Scholar
  134. Nielsen, E. S., Jørgensen, P., & Oddershede, J. (1980). Transition moments and dynamic polarizabilities in a second order polarization propagator approach. Journal of Chemical Physics, 73, 6238.Google Scholar
  135. Noodleman, L. (1981). Valence bond description of antiferromagnetic coupling in transition metal dimers. Journal of Chemical Physics, 74, 5737.Google Scholar
  136. Noodleman, L., & Baerends, E. J. (1984). Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-Xα valence bond theory. Journal of the American Chemical Society, 106, 2316.Google Scholar
  137. Norman, P., Jiemchooroj, A., & Sernelius, B. E. (2003). Polarization propagator calculations of the polarizability tensor at imaginary frequencies and long-range interactions for the noble gases and n-alkanes. Journal of Chemical Physics, 118, 9167.Google Scholar
  138. Ochsenfeld, C., Kussmann, J., & Koziol, F. (2004). Ab initio NMR spectra for molecular systems with a thousand and more atoms: A linear-scaling method. Angewandte Chemie International Edition, 43, 4485.Google Scholar
  139. Oddershede, J., Geertsen, J., & Scuseria, G. E. (1988). Nuclear spin-spin coupling constant of hydrogen molecule with deuterium (HD). Journal of Physical Chemistry, 92, 3056.Google Scholar
  140. Olsen, J., & Jørgensen, P. (1985). Linear and nonlinear response functions for an exact state and for an MCSCF state. Journal of Chemical Physics, 82, 3235.Google Scholar
  141. Olsen, J., & Jørgensen, P. (1995). Time-dependent response theory with applications to self-consistent field and multiconfigurational self-consistent field wave functions. In D. R. Yarkony (Ed.), Modern electronic structure theory (p. 857). Singapore: World Scientific.Google Scholar
  142. Parkinson, W. A., & Oddershede, J. (1997). Response function analysis of magnetic optical rotation. International Journal of Quantum Chemistry, 64, 599.Google Scholar
  143. Paterson, M. J., Christiansen, O., Pawłowski, F., Jørgensen, P., H¨attig, C., Helgaker, T., & Sałek, P. (2006). Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory. Journal of Chemical Physics, 124, 054322.Google Scholar
  144. Pawłowski, F., Jørgensen, P., & H¨attig, C. (2004). Gauge invariance of oscillator strengths in the approximate coupled cluster triples model CC3. Chemical Physics Letters, 389, 413.Google Scholar
  145. Pecul, M., Ruud, K., Rizzo, A., & Helgaker, T. (2004). Conformational effects on the optical rotation of alanine and proline. Journal of Physical Chemistry A, 108, 4269.Google Scholar
  146. Pedersen, T. B., Koch, H., Boman, L., & S´anchez de Mer´as, A. M. J. (2004). Origin invariant calculation of optical rotation without recourse to London orbitals. Chemical Physics Letters, 393, 319.Google Scholar
  147. Perera, S. A., Sekino, H., & Bartlett, R. J. (1994 a). Coupled-cluster calculations of indirect nuclear coupling constants: The importance of non-Fermi contact contributions. Journal of Chemical Physics, 101, 2186.Google Scholar
  148. Perera, S. A., Watts, J. D., & Bartlett, R. J. (1994 b). A theoretical study of hyperfine coupling constants. Journal of Chemical Physics, 100, 1425.Google Scholar
  149. Pluta, T., & Sadlej, A. J. (1998). HyPol basis sets for high-level-correlated calculations of electric dipole hyperpolarizabilities. Chemical Physics Letters, 297, 391.Google Scholar
  150. Podeszwa, R., & Szalewicz, K. (2008). Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 10, 2735.Google Scholar
  151. Raynes, W. T. (1992). Letter to editor. Magnetic Resonance in Chemistry, 30, 686.Google Scholar
  152. Raynes, W. T. (1996). Electric field effects on shielding constants. In D. M. Grant & R. K. Harris (Eds.), Encyclopaedia of NMR (p. 1846). New York: Wiley.Google Scholar
  153. Raynes, W. T., McVay, R., & Wright, S. J. (1989). An improved 13C nuclear shielding scale. Journal of the Chemical Society, Faraday Transactions 2, 85, 759.Google Scholar
  154. Reiher, M., & Wolf, A. (2009). Relativistic quantum chemistry. Weinheim: Wiley.Google Scholar
  155. Rinkevicius, Z., Vaara, J., Telyatnyk, L., & Vahtras, O. (2003). Calculations of nuclear magnetic shielding in paramagnetic molecules. Journal of Chemical Physics, 118, 2550.Google Scholar
  156. Rinkevicius, Z., Telyatnyk, L., Vahtras, O., & ˚ Agren, H. (2004). Density functional theory for hyperfine coupling constants with the restricted-unrestricted approach. Journal of Chemical Physics, 121, 7614.Google Scholar
  157. Rinkevicius, Z., de Almeda, K. J., Oprea, C. I., Vahtras, O., ˚ Agren, H., & Ruud, K. (2008). Degenerate perturbation theory for electronic g tensors: Leading-order relativistic effects. Journal of Chemical Theory and Computation, 4, 1810.Google Scholar
  158. Rizzo, A., & Coriani, S. (2005). Birefringences: A Challenge for both theory and experiment. Advances in Quantum Chemistry, 50, 143.Google Scholar
  159. Rizzo, A., & Gauss, J. (2002). Shielding polarizabilities calculated at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations. Journal of Chemical Physics, 116, 869.Google Scholar
  160. Rizzo, C., Rizzo, A., & Bishop, D. M. (1997). The Cotton–Mouton effect in gases: Experiment and theory. International Reviews in Physical Chemistry, 16, 81.Google Scholar
  161. Rizzo, A., Jans´ık, B., Pedersen, T. B., & ˚ Agren, H. (2006). Origin invariant approaches to the calculation of two-photon circular dichroism. Journal of Chemical Physics, 125, 064113.Google Scholar
  162. Rizzo, A., Frediani, L., & Ruud, K. (2007). An ab initio investigation of the Buckingham birefringence of furan, thiophene, and selenophene in cyclohexane solution. Journal of Chemical Physics, 127, 164321.Google Scholar
  163. Rudziński, A., Puchalski, M., & Pachucki, K. (2009). Relativistic, QED, and nuclear mass effects in the magnetic shielding of 3He. Journal of Chemical Physics, 130, 244102.Google Scholar
  164. Ruiz de Az´ua, M. C., Melo, J. I., & Giribet, C. G. (2003). Orbital contributions to relativistic corrections of the NMR nuclear magnetic shielding tensor originated in scalar field-dependent operators. Molecular Physics, 101, 3103.Google Scholar
  165. Ruud, K., & Helgaker, T. (1997). The magnetizability, rotational g tensor, and quadrupole moment of PF3 revisited. Chemical Physics Letters, 264, 17.Google Scholar
  166. Ruud, K., Helgaker, T., Bak, K. L., Jørgensen, P., & Olsen, J. (1995). Accurate magnetizabilities of the isoelectronic series BeH , BH, and CH +. The MCSCF-GIAO approach. Chemical Physics, 195, 157.Google Scholar
  167. Ruud, K., Vaara, J., Lounila, J., & Helgaker, T. (1998). Vibrationally averaged magnetizabilities and rotational g tensors of the water molecule. Chemical Physics Letters, 297, 467.Google Scholar
  168. Ruud, K., Taylor, P. R., & Jaszuński, M. (2000). Comment on “On the magnetic susceptibility of fluorine.” Journal of Physical Chemistry A, 104, 168.Google Scholar
  169. Ruud, K., ˚ Astrand, P.-O., & Taylor, P. R. (2001). Zero-point vibrational effects on proton shieldings: Functional-group contributions from ab initio calculations. Journal of the American Chemical Society, 123, 4826.Google Scholar
  170. Ruud, K., Taylor, P. R., & ˚ Astrand, P.-O. (2001). Zero-point vibrational effects on optical rotation. Chemical Physics Letters, 337, 217.Google Scholar
  171. Ruud, K., Stephens, P. J., Devlin, F. J., Taylor, P. R., Cheeseman, J. R., & Frisch, M. J. (2003). Coupled-cluster calculations of optical rotation. Chemical Physics Letters, 373, 606.Google Scholar
  172. Sadlej, A. J. (1988). Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collection of Czechoslovak Chemical Communications, 53, 1995.Google Scholar
  173. Sasagane, K., Aiga, F., & Itoh, R. (1993)). Higher-order response theory based on the quasienergy derivatives: The derivation of the frequency-dependent polarizabilities and hyperpolarizabilities. Journal of Chemical Physics, 99, 3738.Google Scholar
  174. Saue, T. (2002). Post Dirac–Fock–methods – Properties. In P. Schwerdtfeger (Ed.), Relativistic electronic structure theory. Part 1. Fundamentals (p. 332). Amsterdam: Elsevier.Google Scholar
  175. Sauer, S. P. A. (1997). Second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes - SOPPA(CCSD): The polarizability and hyperpolarizability of Li . Journal of Physics B: Atomic, Molecular and Optical Physics, 30, 3773.Google Scholar
  176. Sauer, S. P. A., Enevoldsen, T., & Oddershede, J. (1993). Paramagnetism of closed shell diatomic hydrides with six valence electrons. Journal of Chemical Physics, 98, 9748.Google Scholar
  177. Sauer, S. P. A., Jensen, H. J. Aa., & Ogilvie, J. F. (2005). Quantum-chemical calculations of radial functions for rotational and vibrational g factors, electric dipolar moment and adiabatic corrections to the potential energy for analysis of spectra of HeH +. Advances in Quantum Chemistry, 48, 319.Google Scholar
  178. Schatz, P. N., & McCaffery, A. J. (1969). Faraday effect. Quarterly Review of the Chemical Society, 23, 552.Google Scholar
  179. Schindler, M., & Kutzelnigg, W. (1982). Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules. Journal of Chemical Physics, 76, 1919.Google Scholar
  180. Seth, M., Ziegler, T., Banerjee, A., Autschbach, J., van Gisbergen, S. J. A., & Baerends, E. J. (2004). Calculation of the A term of magnetic circular dichroism based on time dependent-density functional theory I. Formulation and implementation. Journal of Chemical Physics, 120, 10942.Google Scholar
  181. Shelton, D. P., & Rice, J. E. (1994). Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chemical Reviews, 94, 3.Google Scholar
  182. Smith, S. A., Palke, W. E., & Gerig, J. T. (1992). The Hamiltonians of NMR. Part I. Concepts in Magnetic Resonance, 4, 107.Google Scholar
  183. Snyder, P. A., Atanasova, S., & Hansen, R. W. C. (2004). Ethylene. Experimental evidence for new assignments of electronic transitions in the π → π energy region. Absorption and magnetic circular dichroism measurements with synchrotron radiation. Journal of Physical Chemistry A, 108, 4194.Google Scholar
  184. Solheim, H., Ruud, K., Coriani, S., & Norman, P. (2008). Complex polarization propagator calculations of magnetic circular dichroism spectra. Journal of Chemical Physics, 128, 094103.Google Scholar
  185. Stanton, J. F., & Bartlett, R. J. (1993). The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. Journal of Chemical Physics, 98, 7029.Google Scholar
  186. Stanton, J. F., Gauss, J., & Christiansen, O. (2001). Equilibrium geometries of cyclic SiC3 isomers. Journal of Chemical Physics, 114, 2993.Google Scholar
  187. Stephens, P. J. (1976). Magnetic circular dichroism. Advances in Chemical Physics, 35, 197.Google Scholar
  188. Stephens, P. J., Devlin, F. J., Cheeseman, J. R., & Frisch, M. J. (2001). Calculation of optical rotation using density functional theory. Journal of Physical Chemistry A, 105, 5356.Google Scholar
  189. Sundholm, D., & Gauss, J. (1997). Isotope and temperature effects on nuclear magnetic shieldings and spin-rotation constants calculated at the coupled-cluster level. Molecular Physics, 92, 1007.Google Scholar
  190. Tellgren, E. I., Soncini, A., & Helgaker, T. (2008). Nonperturbative ab initio calculations in strong magnetic fields using London orbitals. Journal of Chemical Physics, 129, 154114.Google Scholar
  191. Thorvaldsen, A. J., Ruud, K., Rizzo, A., & Coriani, S. (2008). Analytical calculations of frequency-dependent hypermagnetizabilities and Cotton–Mouton constants using London atomic orbitals. Journal of Chemical Physics, 129, 164110.Google Scholar
  192. Tinoco, I. (1975). Two-photon circular dichroism. Journal of Chemical Physics, 62, 1006.Google Scholar
  193. Tozer, D. J., & Handy, N. C. (1998). Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. Journal of Chemical Physics, 109, 10180.Google Scholar
  194. Vaara, J., Jokisaari, J., Wasylishen, R. E., & Bryce, D. L. (2002). Spin–spin coupling tensors as determined by experiment and computational chemistry. Progress in Nuclear Magnetic Resonance Spectroscopy, 41, 233.Google Scholar
  195. Vaara, J., & Pyykk¨o, P. (2003). Relativistic, nearly basis-set-limit nuclear magnetic shielding constants of the rare gases He–Rn: A way to absolute nuclear magnetic resonance shielding scales. Journal of Chemical Physics, 118, 2973.Google Scholar
  196. Vaara, J., Ruud, K., Vahtras, O., ˚ Agren, H., & Jokisaari, J. (1998). Quadratic response calculations of the electronic spin-orbit contribution to nuclear shielding tensors. Journal of Chemical Physics, 109, 1212.Google Scholar
  197. Vaara, J., Ruud, K., & Vahtras, O. (1999). Second- and third-order spin-orbit contributions to nuclear shielding tensors. Journal of Chemical Physics, 111, 2900.Google Scholar
  198. Vahtras, O., ˚ Agren, H., Jørgensen, P., Jensen, H. J. Aa., Helgaker, T. and Olsen, J. (1992 a). Multiconfigurational quadratic response functions for singlet and triplet perturbations: The phosphorescence lifetime of formaldehyde. Journal of Chemical Physics, 97, 9178.Google Scholar
  199. Vahtras, O., ˚ Agren, H., Jørgensen, P., Jensen, H. J. Aa., Padkjær, S. B., & Helgaker, T. (1992 b). Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory. Journal of Chemical Physics, 96, 6120.Google Scholar
  200. Vahtras, O., ˚ Agren, H., P., J., Jensen, H. J. Aa., Helgaker, T., & Olsen, J. (1992 c). Spin–orbit coupling constants in a multiconfiguration linear response approach. Journal of Chemical Physics, 96, 2118.Google Scholar
  201. Vahtras, O., Loboda, O., Minaev, B., ˚ Agren, H., & Ruud, K. (2002). Ab initio calculations of zero-field splitting parameters. Chemical Physics, 279, 133.Google Scholar
  202. van Lenthe, E., Wormer, P. E. S., & van der Avoird, A. (1997). Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. Journal of Chemical Physics, 107, 2488.Google Scholar
  203. Verhoeven, J., & Dymanus, A. (1970). Magnetic properties and molecular quadrupole tensor of the water molecule by beam-maser Zeeman spectroscopy. Journal of Chemical Physics, 52, 3222.Google Scholar
  204. Visscher, L., & Saue, T. (2000). Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation. Journal of Chemical Physics, 113, 3996.Google Scholar
  205. Wasylishen, R. E., & Bryce, D. L. (2002). A revised experimental absolute magnetic shielding scale for oxygen. Journal of Chemical Physics, 117, 10061.Google Scholar
  206. Wiberg, K. B., Wang, Y. G., Wilson, S. M., Vaccaro, P. H., & Cheeseman, J. R. (2006). Sum-over-states calculation of the specific rotations of some substituted oxiranes, chloropropionitrile, ethane, and norbornenone. Journal of Physical Chemistry A, 110, 13995.Google Scholar
  207. Wigglesworth, R. D., Raynes, W. T., Kirpekar, S., Oddershede, J., & Sauer, S. P. A. (2000). Nuclear spin-spin coupling in the acetylene isotopomers calculated from ab initio correlated surfaces for 1J(C,H), 1J(C,C), 2J(C,H), and 3J(H,H). Journal of Chemical Physics, 112, 3735. Erratum: 114, 9192 (2001).Google Scholar
  208. Willets, A., Rice, J., Burland, D. M., & Shelton, D. P. (1992). Problems in the comparison of theoretical and experimental hyperpolarizabilities. Journal of Chemical Physics, 97, 7590.Google Scholar
  209. Woon, D. E., & Dunning, T. H., Jr. (1994). Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. Journal of Chemical Physics, 100, 2975.Google Scholar
  210. Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393, 51.Google Scholar
  211. Zanasi, R., Lazzeretti, P., Malagoli, M., & Piccinini, F. (1995). Molecular magnetic properties within continuous transformations of origin of the current density. Journal of Chemical Physics, 102, 7150.Google Scholar
  212. Zuber, G., & Hug, W. (2004). Rarefied basis sets for the calculation of optical tensors. 1. The importance of gradients on hydrogen atoms for the Raman scattering tensor. Journal of Physical Chemistry A, 108, 2108.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Michał Jaszuński
  • Antonio Rizzo
  • Kenneth Ruud

There are no affiliations available

Personalised recommendations