Skip to main content

Organic Bioelectronics

  • Reference work entry
Encyclopedia of Nanotechnology

Synonyms

Organic bioelectronics (OBOE)

Definition

Active materials used for electrochemical devices are either organic or more commonly inorganic metal (−oxides). This entry only covers organic polymer materials and their application in life science research. Organic Bioelectronics [1] (OBOE) are carbon-based (therefore defined as organic) devices engineered from conductive polymers. The active parts of organic bioelectronic devices are usually composed of conjugated polymers, alone or in combination with other materials to form a primary or secondary interface with biological specimens (therefore defined as bio-). The conductivity of the polymer materials makes it possible to design devices that have the same functionality and capability as common electronics (therefore defined as -electronics). The devices can be manufactured to a multitude of different geometrical designs depending on applications targeted.

Overview and Background

Synthetic polymers revolutionized the technology of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berggren, M., Richter-Dahlfors, A.: Organic bioelectronics. Adv. Mater. 19, 3201–3213 (2007)

    CAS  Google Scholar 

  2. Schmidt, C.E., Shastri, V.R., Vacanti, J.P., Langer, R.: Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA 94, 8948–8953 (1997)

    Article  CAS  Google Scholar 

  3. Asplund, M., et al.: Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 4, 045009 (2009)

    Article  CAS  Google Scholar 

  4. Svennersten, K., Bolin, M.H., Jager, E.W., Berggren, M., Richter-Dahlfors, A.: Electrochemical modulation of epithelia formation using conducting polymers. Biomaterials 30, 6257–6264 (2009)

    Article  CAS  Google Scholar 

  5. Bolin, M.H., et al.: Active control of epithelial cell-density gradients grown along the channel of an organic electrochemical transistor. Adv. Mater. 21, 4379–4382 (2009)

    Article  CAS  Google Scholar 

  6. Nilsson, D., et al.: Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51–54 (2002)

    Article  CAS  Google Scholar 

  7. Cicoira, F., et al.: Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. Adv. Mater. 22, 1012–1016 (2009)

    Article  CAS  Google Scholar 

  8. Kholodenko, B.N., Hancock, J.F., Kolch, W.: Signalling ballet in space and time. Nat. Rev. Mol. Cell. Biol. 11, 414–426 (2010)

    Article  CAS  Google Scholar 

  9. Green, R.A., Lovell, N.H., Wallace, G.G., Poole-Warren, L.A.: Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29, 3393–3399 (2008)

    Article  CAS  Google Scholar 

  10. Bolin, M.H. et al.: Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sensor. Actuator. B Chem. 142, 451–456 (2009)

    Article  CAS  Google Scholar 

  11. Richardson-Burns, S.M. et al.: Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539–1552 (2007)

    Article  CAS  Google Scholar 

  12. Smela, E.: Conjugated polymer actuators for biomedical applications. Adv. Mater. 15, 481–494 (2003)

    Article  CAS  Google Scholar 

  13. Richardson, R.T. et al.: Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 30, 2614–2624 (2009), doi: S0142-9612(09)00022-2 [pii] 10.1016/j.biomaterials.2009.01.015

    Article  CAS  Google Scholar 

  14. Abidjan, M.R., Kim, D.H., Martin, D.C.: Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18, 405–409 (2006), doi: 10.1002/adma.200501726

    Article  CAS  Google Scholar 

  15. Isaksson, J., et al.: Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6, 673–679 (2007), doi: nmatl963 [pii] 10.1038/nmatl963

    Article  CAS  Google Scholar 

  16. Tybrandt, K., et al.: Translating electronic currents to precise acetylcholine -induced neuronal signaling using an organic electrophoretic delivery device. Adv. Mater. 21, 4442–4446 (2009), doi:10.1002/adma.200900187

    Article  CAS  Google Scholar 

  17. Tybrandt, K., Larsson, K.C, Richter-Dahlfors, A., Berggren, M.: Ion bipolar junction transistors. Proc. Natl. Acad. Sci. USA 107 (22), 9929–9932 (2010), doi: 0913911107 [pii] 10.1073/pnas.0913911107

    Google Scholar 

  18. Gabrielsson, E.O., Tybrandt, K., Hammarstrom, P., Berggren, M., Nilsson, K.P.: Spatially controlled amyloid reactions using organic electronics. Small 6, 2153–2161 (2010), doi: 10.1002/smll.201001157

    Article  CAS  Google Scholar 

  19. Simon, D.T. et al.: Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. Mater. 8, 742–746 (2009), doi: nmat2494 [pii] 10.1038/nmat2494

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agneta Richter-Dahlfors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Richter-Dahlfors, A., Berggren, M. (2012). Organic Bioelectronics. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9751-4_3

Download citation

Publish with us

Policies and ethics