Advertisement

The Wetland Book pp 1609-1617 | Cite as

Remote Sensing of Water in Wetlands: Inundation Patterns and Extent

  • Bruce Chapman
  • Laura Hess
  • Richard Lucas
Reference work entry

Abstract

Seasonally varying inundation extent and duration are key properties of wetlands, but are poorly quantified, particularly in tropical, boreal, and coastal regions. Optical sensors such as Landsat are limited by cloud cover, although sensors such as MODIS, with high repeat frequency, partly compensate for this limitation. Synthetic aperture radar (SAR) sensors are insensitive to cloud cover, and at longer wavelengths (C-band and L-band) are capable of detecting water beneath vegetation canopies. Time series of SAR data are effective for monitoring seasonal inundation dynamics, and combinations of different SAR wavelengths and polarizations can discriminate vegetation structure. Optical, SAR, and passive microwave sensors are being employed at global scale to characterize the role of wetlands in global hydrologic and biogeochemical cycles.

Keywords

SAR AIRSAR ALOS PALSAR UAVSAR Napo river Pacaya-samiria Pantanal Double-bounce 

References

  1. Alsdorf DE, Melack JM, Dunne T, Mertes LAK, Hess LL, Smith LC. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature. 2000;404:174–7.CrossRefPubMedGoogle Scholar
  2. Alsdorf DE, Bates P, Melack J, Wilson M, Dunne T. The spatial and temporal complexity of the Amazon flood measured from space. Geophys Res Lett. 2007;34(L08402):1–5.Google Scholar
  3. Alsdorf D, Han SC, Bates P, Melack J. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ. 2010;114(11):2448–56.CrossRefGoogle Scholar
  4. Alsdorf D, Lettenmaier D, Vörösmarty C. The need for global, satellite-based observations of terrestrial surface waters. Eos. 2003;84(269):275–6.Google Scholar
  5. Andersen R, Poulin M, Borcard D, Laiho R, Laine J, Vasander H, Tuittila ET. Environmental control and spatial structures in peatland vegetation. J Veg Sci. 2011;22:878–90.  https://doi.org/10.1111/j.1654-1103.2011.01295.x.CrossRefGoogle Scholar
  6. Arnesen AS, Silva TS, Hess LL, Novo EM, Rudorff CM, Chapman BD, McDonald KC. Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens Environ. 2013;130:51–61. ISSN:0034-4257,  https://doi.org/10.1016/j.rse.2012.10.035.CrossRefGoogle Scholar
  7. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biol. 2013;19(5):1325–46.CrossRefGoogle Scholar
  8. Chapman B, Blom RG. Synthetic aperture radar, technology, past and future applications to archaeology. In: Mapping archaeological landscapes from space. New York: Springer; 2013. p. 113–31.Google Scholar
  9. Chen Y, Huang C, Ticehurst C, Merrin L, Thew P. An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping. Wetlands. 2013;33(5):823–35.CrossRefGoogle Scholar
  10. Cloude SR, Pottier E. A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens. 1996;34:498–518.CrossRefGoogle Scholar
  11. De Grandi GD, Bouvet A, Lucas RM, Shimada M, Monaco S, Rosenqvist A. The K&C PALSAR mosaic of the African continent: processing issues and first thematic results. IEEE Trans Geosci Remote Sens. 2011;49(10):3593–610.  https://doi.org/10.1109/TGRS.2011.2165288.CrossRefGoogle Scholar
  12. Frappart F, Seyler F, Martinez JM, Leon JG, Cazenave A. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens Environ. 2005;99(4):387–99.CrossRefGoogle Scholar
  13. Hess LL, Melack JM. Remote sensing of vegetation and flooding on Magela Creek floodplain (Northern Territory, Australia) with the SIR-C synthetic aperture radar. Hydrobiologia. 2003;500:65–82.CrossRefGoogle Scholar
  14. Hess LL, Melack JM, Simonett DS. Radar detection of flooding beneath the forest canopy: a review. Int J Remote Sens. 1990;11:1313–25.CrossRefGoogle Scholar
  15. Hess LL, Melack JM, Filoso S, Wang Y. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens. 1995;33:896–904.CrossRefGoogle Scholar
  16. Kasischke ES, Bourgeau-Chavez LL. Monitoring south Florida wetlands using ERS-1 SAR imagery. Photogramm Eng Remote Sens. 1997;33:281–91.Google Scholar
  17. Kasischke ES, Smith KB, Bourgeau-Chavez LL, Romanowicz EA, Brunzell S, Richardson CJ. Effects of seasonal hydrologic patterns in South Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sens Environ. 2003;88(4):423–41.CrossRefGoogle Scholar
  18. Lang M, McCarty G. Improved detection of forested wetland hydrology with LiDAR intensity. Wetlands. 2009;29:1166–78.CrossRefGoogle Scholar
  19. Lee H, Beighley RE, Alsdorf D, Jung HC, Shum CK, Duan J, Guoa J, Yamazakie D, Andreadis K. Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ. 2011;115(12):3530–8.CrossRefGoogle Scholar
  20. Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Beerling DJ, Chen G, Eliseev AV, Denisov SN, Hopcroft PO, Lettenmaier DP, Riley WJ, Singarayer JS, Subin ZM, Tian H, Zürcher S, Brovkin V, van Bodegom PM, Kleinen T, Yu ZC, Kaplan JO. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences. 2013;10(2):753–88.CrossRefGoogle Scholar
  21. Papa F, Prigent C, Rossow WB, Legresy B, Remy F. Inundated wetland dynamics over boreal regions from remote sensing: the use of Topex-Poseidon dual-frequency radar altimeter observations. Int J Remote Sens. 2006;27:4847–66.  https://doi.org/10.1080/01431160600675887.CrossRefGoogle Scholar
  22. Prigent C, Papa F, Aires F, Rossow WB, Matthews E. Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res. 2007;112:D12107.  https://doi.org/10.1029/2006JD007847.CrossRefGoogle Scholar
  23. Rebelo LM, Finlayson CM, Nagabhatla N. Remote sensing and GIS for wetland inventory, mapping and change analysis. J Environ Manage. 2009;90(7):2144–53.CrossRefPubMedGoogle Scholar
  24. Rosenqvist A, Shimada M, Chapman B, Freeman A, De Grandi G, Saatchi S, Rauste Y. The global rain forest mapping project – a review. Int J Remote Sens. 2000;21(6&7):1375–87.CrossRefGoogle Scholar
  25. Shaikh M, Green D, Cross H. A remote sensing approach to determine environmental flows for wetlands of the Lower Darling River, New South Wales, Australia. Int J Remote Sens. 2001;22(9):1737–51.CrossRefGoogle Scholar
  26. Smith LC. Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process. 1997;11:1427–39.CrossRefGoogle Scholar
  27. Telmer K, Costa M. SAR-based estimates of the size distribution of lakes in Brazil and Canada: a tool for investigating carbon in lakes. Aquatic Conserv Mar Freshwat Ecosyst. 2007;17:289–304.CrossRefGoogle Scholar
  28. van der Valk A. The biology of freshwater wetlands. Oxford University Press; 2012.CrossRefGoogle Scholar
  29. Vanderbilt VC, Guillaume LP, Livingston GP, Ustin SL, Diaz Barrios MC, Bréon FM, Leroy MM, Balois JY, Morrissey LA, Shewchuk SR, Stearn JA, Zedler SE, Syder JL, Bouffies-Cloche S, Herman M. Inundation discriminated using sun glint. IEEE Trans Geosci Remote Sens. 2002;40(6):1279–87.CrossRefGoogle Scholar
  30. Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE. Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci. 2013;6:530–3.CrossRefGoogle Scholar
  31. Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Chang. 2013;3(5):458–65.CrossRefGoogle Scholar
  32. Whitcomb J, Moghaddam M, McDonald K, Kellndorfer J, Podest E. Wetlands map of Alaska using L-band radar satelite imagery. Can J Remote Sens. 2009;35(1):54–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Earth Research InstituteUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Centre for Ecosystem Sciences (CES), School of Biological, Earth and Environmental Sciences (BEES)University of New South Wales (UNSW)KensingtonAustralia
  4. 4.ICESSUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations