Encyclopedia of Solid Earth Geophysics

2011 Edition
| Editors: Harsh K. Gupta

Seismic Anisotropy

  • Thorsten W. Becker
Reference work entry
DOI: https://doi.org/10.1007/978-90-481-8702-7_51

Definition

Seismic anisotropy refers to the directional dependence of seismic wave speeds and particle motion polarizations, as well as the splitting of normal modes, as caused by the elastic properties of rocks.

Introduction

Many of the minerals that make up Earth are intrinsically anisotropic. When rocks are progressively deformed over geologic timescales, the alignment of mineral grains (lattice-preferred orientation, LPO) can lead to bulk anisotropy of the rock. Bulk anisotropy can additionally be generated by an ordered assembly of individually isotropic materials of different wave speeds (shape-preferred orientation, SPO). Both types of anisotropy are found within the Earth; SPO anisotropy also highlights a fundamental ambiguity between isotropic heterogeneity and anisotropy. Seismic wave propagation through an anisotropic medium depends on the wavelengths over which a particular wave type averages, complicating the analysis of seismological data. Both LPO and SPO imply...
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

Detailed comments by Donna Blackman, Mark Behn, and Sergei Lebedev and valuable suggestions from Lapo Boschi, Sebastien Chevrot, David Okaya, Mark Panning, Vera Schulte-Pelkum, and an anonymous reviewer helped improve this contribution.

Bibliography

  1. Abt, D. L., and Fischer, K. M., 2008. Resolving three-dimensional anisotropic structure with shear-wave splitting tomography. Geophysical Journal International, 173, 859–886.Google Scholar
  2. Anderson, D. L., 1966. Recent evidence concerning the structure and composition of the Earth’s mantle. In Physics and Chemistry of the Earth. Oxford: Pergmanon, Vol. 6, pp. 1–131.Google Scholar
  3. Anderson, D. L., 1989. Theory of the Earth. Boston, MA: Blackwell Scientific Publications (Available online at http://caltechbook.library.caltech.edu/14/1/TheoryoftheEarth.pdf, accessed 01/2010).
  4. Ando, M., Ishikawa, Y., and Yamasaki, F., 1983. Shear-wave polarization anisotropy in the mantle beneath Honshu, Japan. Journal of Geophysical Research, 88, 5850–5864.Google Scholar
  5. Babuška, V., and Cara, M., 1991. Seismic Anisotropy in the Earth. Dordrecht: Kluwer Academic Publishers.Google Scholar
  6. Babuška, V., and Plomerová, J., 2006. European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Physics of the Earth and Planetary Interiors, 158, 264–280.Google Scholar
  7. Babuška, V., Plomerová, J., and Šíleny, J., 1984. Spatial variations of Presiduals and deep structure of the European lithospere. Geophysical Journal of the Royal Astronomical Society, 79, 363–383.Google Scholar
  8. Backus, G. E., 1965. Possible forms of seismic anisotropy of the uppermost mantle under oceans. Journal of Geophysical Research, 70, 3429–3439.Google Scholar
  9. Becker, T. W., 2008. Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophysical Research Letters, 35, L05303, doi:10.1029/2007GL032928, correction: doi:10.1029/2008GL033946.Google Scholar
  10. Becker, T. W., Kellogg, J. B., Ekström, G., and O’Connell, R. J., 2003. Comparison of azimuthal seismic anisotropy from surface waves and finite-strain from global mantle-circulation models. Geophysical Journal International, 155, 696–714.Google Scholar
  11. Becker, T. W., Chevrot, S., Schulte-Pelkum, V., and Blackman, D. K., 2006. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. Journal of Geophysical Research, 111, B08309, doi:10.1029/2005JB004095.Google Scholar
  12. Becker, T. W., Kustowski, B., and Ekström, G., 2008. Radial seismic anisotropy as a constraint for upper mantle rheology. Earth and Planetary Science Letters, 267, 213–237.Google Scholar
  13. Beghein, C., and Trampert, J., 2003. Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299, 552–555.Google Scholar
  14. Behn, M. D., Conrad, C. P., and Silver, P. G., 2004. Detection of upper mantle flow associated with the African Superplume. Earth and Planetary Science Letters, 224, 259–274.Google Scholar
  15. Bercovici, D., and Karato, S-i., 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425, 39–44.Google Scholar
  16. Blackman, D., 2007. Use of mineral physics, with geodynamic modelling and seismology, to investigate flow in the Earth’s mantle. Reports on Progress in Physics, 70, 659–689.Google Scholar
  17. Bokelmann, G. H. R., 2002. Convection-driven motion of the north American craton: evidence from P-wave anisotropy. Geophysical Journal International, 148, 278–287.Google Scholar
  18. Boschi, L., and Dziewoński, A. M., 2000. Whole Earth tomography from delay times of P, PcP, PKP phases: lateral heterogeneities in the outer core, or radial anisotropy in the mantle? Journal of Geophysical Research, 105, 25,567–25,594.Google Scholar
  19. Browaeys, J., and Chevrot, S., 2004. Decomposition of the elastic tensor and geophysical applications. Geophysical Journal International, 159, 667–678.Google Scholar
  20. Buffett, B., 2009. Onset and orientation of convection in the inner core. Geophysical Journal International, 179, 711–719.Google Scholar
  21. Chastel, Y. B., Dawson, P. R., Wenk, H.-R., and Bennett, K., 1993. Anisotropic convection with implications for the upper mantle. Journal of Geophysical Research, 98, 17,757–17,771.Google Scholar
  22. Chevrot, S., 2006. Finite-frequency vectorial tomography: a new method for high-resolution imaging of upper mantle anisotropy. Geophysical Journal International, 165, 641–657.Google Scholar
  23. Chevrot, S., and Monteiller, V., 2009. Principles of vectorial tomography – the effects of model parametrization and regularization in tomographic imaging of seismic anisotropy. Geophysical Journal International, 179, 1726–1736.Google Scholar
  24. Christensen, N. I., and Mooney, W. D., 1995. Seismic velocity structure and composition of the continental crust: a global review. Journal of Geophysical Research, 100, 9761–9788.Google Scholar
  25. Christensen, U. R., 1987. Some geodynamical effects of anisotropic viscosity. Geophysical Journal of the Royal Astronomical Society, 91, 711–736.Google Scholar
  26. Conrad, C. P., and Behn, M., 2010. Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy. Geochemistry, Geophysics, Geosystems, 11, Q05W05, doi:10.1029/2009GC002970.Google Scholar
  27. Conrad, C. P., Behn, M. D., and Silver, P. G., 2007. Global mantle flow and the development of seismic anisotropy: differences between the oceanic and continental upper mantle. Journal of Geophysical Research, 112, B07317, doi:10.1029/2006JB004608.Google Scholar
  28. Crampin, S., and Chastin, S., 2003. A review of shear wave splitting in the crack-critical crust. Geophysical Journal International, 155, 221–240.Google Scholar
  29. Deguen, R., and Cardin, P., 2009. Tectonic history of the Earth’s inner core preserved in its seismic structure. Nature Geoscience, 2, 419–422.Google Scholar
  30. Deschamps, F., Lebedev, S., Meier, T., and Trampert, J., 2008. Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central United States. Geophysical Journal International, 173, 827–843.Google Scholar
  31. Dziewoński, A. M., and Anderson, D. L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.Google Scholar
  32. Ekström, G., and Dziewonski, A. M., 1998. The unique anisotropy of the Pacific upper mantle. Nature, 394, 168–172.Google Scholar
  33. Forsyth, D. W., 1975. The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal of the Royal Astronomical Society, 43, 103–162.Google Scholar
  34. Fouch, M., 2006. Upper mantle anisotropy database. Online, accessed in 06/2006, http://geophysics.asu.edu/anisotropy/upper/.
  35. Fouch, M. J., and Rondenay, S., 2006. Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors, 158, 292–320.Google Scholar
  36. Gaboret, C., Forte, A. M., and Montagner, J.-P., 2003. The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy. Earth and Planetary Science Letters, 208, 219–233.Google Scholar
  37. Gaherty, J. B., and Jordan, T. H., 1995. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science, 268, 1468–1471.Google Scholar
  38. Gaherty, J. B., Jordan, T. H., and Gee, L. S., 1996. Seismic structure of the upper mantle in a central Pacific corridor. Journal of Geophysical Research, 101, 22,291–22,310.Google Scholar
  39. Garnero, E. J., 2004. A new paradigm for Earth’s core-mantle boundary. Science, 304, 835–836.Google Scholar
  40. Garnero, E. J., and McNamara, A. K., 2008. Structure and dynamics of the Earth’s lower mantle. Science, 320, 626–628.Google Scholar
  41. Gung, Y., Panning, M., and Romanowicz, B., 2003. Global anisotropy and the thickness of continents. Nature, 422, 707–711.Google Scholar
  42. Hager, B. H., and O’Connell, R. J., 1981. A simple global model of plate dynamics and mantle convection. Journal of Geophysical Research, 86, 4843–4867.Google Scholar
  43. Hearmon, R. F. S., 1961. An Introduction to Applied Anisotropic Elasticity. London: Oxford University Press.Google Scholar
  44. Hess, H. H., 1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203, 629–631.Google Scholar
  45. Holtzman, B. K., Kohlstedt, D. L., Zimmerman, M. E., Heidelbach, F., Hiraga, T., and Hustoft, J., 2003. Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science, 301, 1227–1230.Google Scholar
  46. Ishii, M., and Dziewoński, A. M., 2003. Distinct seismic anisotropy at the centre of the earth. Physics of the Earth and Planetary Interiors, 140, 203–217.Google Scholar
  47. Jeanloz, R., and Wenk, H. R., 1988. Convection and anisotropy of the inner core. Geophysical Research Letters, 15, 72–75.Google Scholar
  48. Kaminski, É., and Ribe, N. M., 2001. A kinematic model for recrystallization and texture development in olivine polycrystals. Earth and Planetary Science Letters, 189, 253–267.Google Scholar
  49. Karato, S-i., 1992. On the Lehmann discontinuity. Geophysical Research Letters, 51, 2255–2258.Google Scholar
  50. Karato, S-i., Jung, H., Katayama, I., and Skemer, P., 2008. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annual Review of Earth Planetary Sciences, 36, 59–95.Google Scholar
  51. Kreemer, C., 2009. Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. Journal of Geophysical Research, 114, B10405, doi:10.1029/2009JB006416.Google Scholar
  52. Kustowski, B., Ekström, G., and Dziewoński, A. M., 2008. Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. Journal of Geophysical Research, 113, B06306, doi:10.1029/2007JB005169.Google Scholar
  53. Lebedev, S., and van der Hilst, R. D., 2008. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173, 505–518.Google Scholar
  54. Lev, E., and Hager, B. H., 2008. Rayleigh Taylor instabilities with anisotropic lithospheric viscosity. Geophysical Journal International, 173, 806–814.Google Scholar
  55. Levin, V., and Park, J., 1998. P – SH conversions in layered media with hexagonally symmetric anisotropy: a cookbook. Pure and Applied Geophysics, 151, 669–697.Google Scholar
  56. Lin, F., Moschetti, M. P., and Ritzwoller, M. H., 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173, 281–298.Google Scholar
  57. Long, M. D., and Becker, T. W., 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, 341–354.Google Scholar
  58. Long, M. D., and Silver, P. G., 2009. Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surveys in Geophysics, 30, 407–461.Google Scholar
  59. Long, M. D., de Hoop, M. V., and van der Hilst, R. D., 2008. Wave equation shear wave splitting tomography. Geophysical Journal International, 172, 311–330.Google Scholar
  60. Love, A. E. H., 1927. A Treatise on the Mathematical Theory of Elasticity. Cambridge: Cambridge University Press. reprinted in 1944 by Dover Publications, New York.Google Scholar
  61. Mainprice, D., 2007. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. In Schubert, G., and Bercovic, D. (eds.), Treatise on Geophysics. Oxford: Elsevier, Vol. 2, pp. 437–492.Google Scholar
  62. Mainprice, D., and Nicholas, A., 1989. Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11, 175–189.Google Scholar
  63. Marone, F., and Romanowicz, F., 2007. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature, 447, 198–201.Google Scholar
  64. McKenzie, D. P., 1979. Finite deformation during fluid flow. Geophysical Journal of the Royal AstronomicalSociety, 58, 689–715.Google Scholar
  65. McNamara, A. K., van Keken, P. E., and Karato, S-i., 2002. Development of anisotropic structure in the Earth’s lower mantle by solid-state convection. Nature, 416, 310–314.Google Scholar
  66. Meissner, R., Mooney, W. D., and Artemieva, I., 2002. Seismic anisotropy and mantle creep in young orogens. Geophysical Journal International, 149, 1–14.Google Scholar
  67. Meissner, R., Rabbel, W., and Kern, H., 2006. Seismic lamination and anisotropy of the lower continental crust. Tectonophysics, 416, 81–99.Google Scholar
  68. Merkel, S., McNamara, A. K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y., Duffy, T. S., and Wenk, H.-R., 2007. Deformation of (Mg, Fe)SiO3 post-perovskite and D″ anisotropy. Science, 316(5832), 1729–32.Google Scholar
  69. Montagner, J.-P., 2007. Upper mantle structure: Global isotropic and anisotropic elastic tomography. In Schubert, G., and Bercovici, D. (eds.), Treatise on Geophysics. Amsterdam: Elsevier, Vol. 1, pp. 559–589.Google Scholar
  70. Montagner, J. P., and Anderson, D. L., 1989. Petrological constraints on seismic anisotropy. Physics of the Earth and Planetary Interiors, 54, 82–105.Google Scholar
  71. Montagner, J.-P., and Nataf, H.-C., 1986. A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research, 91, 511–520.Google Scholar
  72. Montagner, J. P., and Nataf, H. C., 1988. Vectorial tomography-I. Theory. Geophysical Journal, 94, 295–307.Google Scholar
  73. Montagner, J.-P., Griot-Pommera, D.-A., and Laveé, J., 2000. How to relate body wave and surface wave anisotropy? Journal of Geophysical Research, 105, 19,015–19,027.Google Scholar
  74. Moore, M. M., Garnero, E. J., Lay, T., and Williams, Q., 2004. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. Journal of Geophysical Research, 103, B02319, doi:10.1029/2003JB002546.Google Scholar
  75. Morelli, A., Dziewonski, A. M., and Woodhouse, J. H., 1986. Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters, 13, 1545–1548.Google Scholar
  76. Nataf, H.-C., Nakanishi, I., and Anderson, D. L., 1984. Anisotropy and shear velocity heterogeneity in the upper mantle. Geophysical Research Letters, 11, 109–112.Google Scholar
  77. Nye, J. F., 1985. Physical Properties of Crystals. London: Oxford University Press.Google Scholar
  78. Panning, M., and Romanowicz, B., 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International, 167, 361–379.Google Scholar
  79. Panning, M. P., and Nolet, G., 2008. Surface wave tomography for azimuthal anisotropy in a strongly reduced parameter space. Geophysical Journal International, 174, 629–648.Google Scholar
  80. Park, J., and Levin, V., 2002. Seismic anisotropy: tracing plate dynamics in the mantle. Science, 296, 485–489.Google Scholar
  81. Podolefsky, N. S., Zhong, S., and McNamara, A. K., 2004. The anisotropic and rheological structure of the oceanic upper mantle from a simple model of plate shear. Geophysical Journal International, 158, 287–296.Google Scholar
  82. Saltzer, R. L., Gaherty, J. B., and Jordan, T. H., 2000. How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth? Geophysical Journal International, 141, 374–390.Google Scholar
  83. Savage, M., 1998. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. Journal of Geophysical Research, 103, 15,069–15,087.Google Scholar
  84. Savage, M. K., 1999. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Reviews of Geophysics, 37, 65–106.Google Scholar
  85. Schulte-Pelkum, V., and Blackman, D. K., 2003. A synthesis of seismic P and S anisotropy. Geophysical Journal International, 154, 166–178.Google Scholar
  86. Schulte-Pelkum, V., Masters, G., and Shearer, P. M., 2001. Upper mantle anistropy from long-period P polarization. Journal of Geophysical Research, 106, 21,917–21,934.Google Scholar
  87. Sieminski, A., Trampert, J., and Tromp, J., 2009. Principal component analysis of anisotropic finite-frequency sensitivity kernels. Geophysical Journal International, 179, 1186–1198.Google Scholar
  88. Šíleny, J., and Plomerová, J., 1996. Inversion of shear-wave splitting parameters to retrieve three-dimensional orientation of anisotropy in continental lithosphere. Physics of the Earth and Planetary Interiors, 95, 277–292.Google Scholar
  89. Silver, P. G., 1996. Seismic anisotropy beneath the continents: probing the depths of geology. Annual Review of Earth Planetary Sciences, 24, 385–432.Google Scholar
  90. Silver, P. G., and Chan, W. W., 1991. Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96, 16,429–16,454.Google Scholar
  91. Smith, D. B., Ritzwoller, M. H., and Shapiro, N. M., 2004. Stratification of anisotropy in the Pacific upper mantle. Journal of Geophysical Research, 109, B11309, doi:10.1029/2004JB003200.Google Scholar
  92. Smith, G. P., and Ekström, G., 1999. A global study of Pn anisotropy beneath continents. Journal of Geophysical Research, 104, 963–980.Google Scholar
  93. Smith, M. L., and Dahlen, F. A., 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78, 3321–3333.Google Scholar
  94. Souriau, A., 2007. The Earth’s core. In Romanowicz, B., and Dziewonski, A. (eds.), Treatise on Geophysics. Amsterdam: Elsevier, Vol. 1, pp. 655–693.Google Scholar
  95. Tanimoto, T., and Anderson, D. L., 1984. Mapping convection in the mantle. Geophysical Research Letters, 11, 287–290.Google Scholar
  96. Tanimoto, T., and Anderson, D. L., 1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s. Journal of Geophysical Research, 90, 1842–1858.Google Scholar
  97. Thomsen, L., 1986. Weak elastic anisotropy. Geophysics, 51, 1954–1966.Google Scholar
  98. Tommasi, A., Knoll, M., Vauchez, A., Sgnorelli, J., Thoraval, C., and Loge, R., 2009. Structural reactivation in plate tectonics controlled by olivine crystals anisotropy. Nature Geosciences, 2, 423–427.Google Scholar
  99. Trampert, J., and van Heijst, H. J., 2002. Global azimuthal anisotropy in the transition zone. Science, 296, 1297–1299.Google Scholar
  100. Tromp, J., 2001. Inner core anisotropy and rotation. Annual Review of Earth and Planetary Sciences, 29, 47–69.Google Scholar
  101. Vinnik, L., Kosarev, G. L., and Makeyeva, L. I., 1984. Anisotropy of the lithosphere from the observations of SKS and SKKS phases. Proceedings of Academic Sciences USSR, 278, 1335–1339.Google Scholar
  102. Visser, K., Trampert, J., Lebedev, S., and Kennett, B. L. N., 2008. Probability of radial anisotropy in the deep mantle. Earth and Planetary Science Letters, 270, 241–250.Google Scholar
  103. Weiss, T., Siegesmund, S., Rabbel, W., Bohlen, T., and Pohl, M., 1999. Seismic velocities and anisotropy of the lower continental crust: a review. Pure and Applied Geophysics, 156, 97–122.Google Scholar
  104. Woodhouse, J. H., Giardini, D., and Li, X.-D., 1986. Evidence for inner core anisotropy from free oscillations. Geophysical Research Letters, 13, 1549–1552.Google Scholar
  105. Wookey, J., Kendall, J.-M., and Barruol, G., 2002. Mid-mantle deformation inferred from seismic anisotropy. Nature, 415, 777–780.Google Scholar
  106. Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J., and Price, G. D., 2005. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature, 438, 1004–1007.Google Scholar
  107. Wüstefeld, A., Bokelmann, G. H. R., Barruol, G., and Montagner, J. P., 2009. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Physics of the Earth and Planetary Interiors, 176, 198–212.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA