Encyclopedia of Solid Earth Geophysics

2011 Edition
| Editors: Harsh K. Gupta

Earthquake, Magnitude

  • Peter BormannEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-90-481-8702-7_3

Synonyms

Richter scale

Definition

The magnitude of an earthquake is a number that characterizes the relative size or amount of elastic energy released by such an event (see  Earthquakes, Energy). It is usually based on measurement of the maximum ground motion recorded by a seismograph (sometimes for a particular wave type and frequency) and corrected for the decay of amplitudes with epicenter distance and source depth due to geometric spreading and attenuation during wave propagation (see  Propagation of Elastic Waves: Fundamentals).

Original definition of earthquake magnitude

The first paper on earthquake magnitude was published by Charles F. Richter (1935), titled An instrumental earthquake magnitude scale. Therefore, often reference is made to the size or strength of earthquakes as measured on the Richter scale. Yet, this may be incorrect, especially for large earthquakes (magnitude saturation). Richter (1935, p. 1) wrote: “In the course of historical or statistical study of...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Abe, K., 1981. Magnitudes of large shallow earthquakes from 1904 to 1980. Physics of the Earth and Planetary Interiors, 27, 72–92.Google Scholar
  2. Aki, K., 1967. Scaling law of seismic spectrum. Journal of Geophysical Research, 72, 1217–1231.Google Scholar
  3. Bonner, J. L., Russell, D. R., Harkrider, D. G., Reiter, D. T., and Herrmann, R. B., 2006. Development of a time-domain, variable-period surface-wave magnitude measurement procedure for application at regional and teleseismic distances, part II: Application and M s-m b performance. Bulletin of the Seismological Scoiety of America, 96, 678–696.Google Scholar
  4. Bormann, P., 2002. Magnitude calibration functions and complementary data. In Bormann, P. (ed.), IASPEI New Manual of Seismological Observatory Practice. Potsdam: GeoForschungs Zentrum Potsdam, Vol. 2, DS3.1, pp. 1–7.Google Scholar
  5. Bormann, P., and Saul, J., 2008. The new IASPEI standard broadband magnitude m B. Seismological Research Letters., 79, 698–705.Google Scholar
  6. Bormann, P., and Saul, J., 2009a. Earthquake magnitude. In Meyers, A. (ed.), Encyclopedia of Complexity and Systems Science. New York: Springer, Vol. 3, pp. 2473–2496.Google Scholar
  7. Bormann, P., and Saul, J., 2009b. A fast, non-saturating magnitude estimator for great earthquakes. Seismological Research Letters, 80, 808–816.Google Scholar
  8. Bormann, P., Engdahl, E. R., and Kind, R., 2002a. Chapter 2: Seismic wave propagation and Earth models. In Bormann, P. (ed.), IASPEI New Manual of Seismological Observatory Practice. Potsdam: GeoForschungs Zentrum Potsdam, Vol. 1, Chapter 2, pp. 1–70.Google Scholar
  9. Bormann, P., Baumbach, M., Bock, G., Grosser, H., Choy, G. L., and Boatwright, J., 2002b. Seismic sources and source parameters. In Bormann, P. (ed.), IASPEI New Manual of Seismological Observatory Practice. Potsdam: GeoForschungs Zentrum Potsdam, Vol. 1, Chapter 3, pp. 1–94.Google Scholar
  10. Bormann, P., Liu, R., Xu, Z., Ren, K., Zhang, L., and Wendt, S., 2009. First application of the new IASPEI teleseismic magnitude standards to data of the China National Seismographic Network. Bulletin of the Seismological Society of America, 99, 1868–1891.Google Scholar
  11. Braunmiller, J., Kradolfer, U., Baer, M., and Giardini, D., 2002. Regional moment tensor determinations in the European-Mediterranian area – initial results. Tectonophysics, 356, 5–22.Google Scholar
  12. Choy, G. L., and Boatwright, J., 1995. Global patterns of radiated seismic energy and apparent stress. Journal of Geophysical Research, 100, 18205–18228.Google Scholar
  13. Choy, G. L., and Kirby, S., 2004. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophysical Journal International, 159, 991–1012.Google Scholar
  14. Di Giacomo, D., Grosser, H., Parolai, S., Bormann, P., and Wang, R., 2008. Rapid determination of Me for strong to great shallow earthquakes. Geophysical Research Letters, 35, L10308, doi:10.1029/2008GL033505.Google Scholar
  15. Di Giacomo, D., Parolai, S., Bormann, P., Grosser, H., Saul, J., Wang, R., and Zschau, J., 2010a. Suitability of rapid energy magnitude determinations for rapid response purposes. Geophysical Journal International, 180, 361–374.Google Scholar
  16. Di Giacomo, D., Parolai, S., Bormann, P., Grosser, H., Saul, J., Wang, R., and Zschau, J., 2010b. Erratum. Geophysical Journal International, 181, 1725–1726.Google Scholar
  17. Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–2852.Google Scholar
  18. Ekström, G., and Dziewonski, A. M., 1988. Evidence of bias in estimations of earthquake size. Nature, 332, 319–323.Google Scholar
  19. Geller, R. J., 1976. Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66, 1501–1523.Google Scholar
  20. Gordon, D. W., 1971. Surface-wave versus body-wave magnitude. Earthquake Notes, 42, 20–28.Google Scholar
  21. Gutenberg, B., 1945a. Amplitude of surface waves and magnitude of shallow earthquakes. Bulletin of the Seismological Society of America, 35, 3–12.Google Scholar
  22. Gutenberg, B., 1945b. Amplitudes of P, PP, and S and magnitude of shallow earthquakes. Bulletin of the Seismological Society of America, 35, 57–69.Google Scholar
  23. Gutenberg, B., 1945c. Magnitude determination of deep-focus earthquakes. Bulletin of the Seismological Society of America, 35, 117–130.Google Scholar
  24. Gutenberg, B., and Richter, C. F., 1956. Magnitude and energy of earthquakes. Annali di Geofisica, 9, 1–15.Google Scholar
  25. Hatzidimitriou, P., Papazachos, C., Kiratzi, A., and Theodulidis, N., 1993. Estimation of attenuation structure and local earthquake magnitude based on acceleration records in Greece. Tectonophysics, 217, 243–253.Google Scholar
  26. Hanks, C., and Kanamori, H., 1979. A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.Google Scholar
  27. Hara, T., 2007. Measurement of duration of high-frequency energy radiation and its application to determination of magnitudes of large shallow earthquakes. Earth, Planets, and Space, 59, 227–231.Google Scholar
  28. Herak, M., and Herak, D., 1993. Distance dependence of M S and calibrating function for 20 second Rayleigh waves. Bulletin of the Seismological Society of America, 83, 1881–1892.Google Scholar
  29. Hutton, L. K., and Boore, D. M., 1987. The ML scale in Southern California. Bulletin of the Seismological Society of America, 77, 2074–2094.Google Scholar
  30. IASPEI, 2005. Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data (available online at http://www.iaspei.org/commissions/CSOI.html).
  31. Kanamori, H., 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987.Google Scholar
  32. Kanamori, H., 1983. Magnitude scale and quantification of earthquakes. Tectonophysics, 93, 185–199.Google Scholar
  33. Kanamori, H., and Anderson, D. L., 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65, 1073–1095.Google Scholar
  34. Kanamori, H., and Rivera, L., 2008. Inversion of W phase: speeding up seismic tsunami warning. Geophysical Journal International, 175, 222–238.Google Scholar
  35. Kanamori, H., Mori, J., Hauksson, E., Heaton, Th. H., Hutton, L. K., and Jones, L. M., 1993. Determination of earthquake energy release and ML using TERRASCOPE. Bulletin of the Seismological Society of America, 83, 330–346.Google Scholar
  36. Lee, V., Trifunac, M., Herak, M., Živčić, M., and Herak, D., 1990. MLSM computed from strong motion accelerograms recorded in Yugoslavia. Earthquake Engineering and structural dynamics, 19, 1167–1179.Google Scholar
  37. Lomax, A., and Michelini, A., 2009. M wpd: A duration-amplitude procedure for rapid determination of earthquake magnitude and tsunamigenic potential from P waveforms. Geophysical Journal International, 176, 200–214.Google Scholar
  38. Okal, E. A., and Talandier, J., 1989. Mm: A variable-period mantle magnitude. Journal of Geophysical Research, 94, 4169–4193.Google Scholar
  39. Purcaru, G., and Berckhemer, H., 1978. A magnitude scale for very large earthquakes. Tectonophysics, 49, 189–198.Google Scholar
  40. Rezapour, M., and Pearce, R. G., 1998. Bias in surface-wave magnitude M S due to inadequate distance corrections. Bulletin of the Seismological Society of America, 88, 43–61.Google Scholar
  41. Richter, C. F., 1935. An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25, 1–32.Google Scholar
  42. Richter, C., 1958. Elementary Seismology. San Francisco/London: W.H. Freeman.Google Scholar
  43. Scordilis, E. M., 2006. Empirical global relations converting Ms and mb to mement magnitude. Journal of Seismology, 10, 225–236.Google Scholar
  44. Stein, S., and Okal, E. A., 2005. Speed and size of the Sumatra earthquake. Nature, 434, 581–582, doi:10.1038/434581a.Google Scholar
  45. Tsai, V. C., Nettles, M., Ekström, G., and Dziewonski, A., 2005. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophysical Research Letters, 32, L17304, doi:10.1029/2005GL023813.Google Scholar
  46. Tsuboi, S., Whitmore, P. H., and Sokolowski, T. J., 1999. Application of MWP to deep and teleseismic earthquakes. Bulletin of the Seismological Society of America, 89, 1345–1351.Google Scholar
  47. Uhrhammer, R. A., and Collins, E. R., 1990. Synthesis of Wood-Anderson seismograms from broadband digital records. Bulletin of the Seismological Society of America, 80, 702–716.Google Scholar
  48. Utsu, T., 2002. Relationships between magnitude scales. In Lee, A., Kanamori, H., Jennings, P. C., and Kisslinger, C. (eds.), International Handbook of Earthquake and Engineering Seismology. Amsterdam: Academic, Part A, pp. 733–746.Google Scholar
  49. Vanĕk, J., Zátopek, A., Kárnik, V., Kondorskaya, N. V., Riznichenko, Y. V., Savarenski, E. F., Solov´ev, S. L., and Shebalin, N. V., 1962. Standardization of magnitude scales. Izvestiya Akademii Nauk SSSR, Seriya Geofisičeskaya, 2, 153–157 (with English translation).Google Scholar
  50. von Seggern, D., 1977. Amplitude-distance relation for 20-second Rayleigh waves. Bulletin of the Seismological Society of America, 67, 405–411.Google Scholar
  51. Weinstein, S. A., and Okal, E. A., 2005. The mantle wave magnitude Mm and the slowness parameter Θ: Five years of real-time use in the context of tsunami warning. Bulletin of the Seismological Society of America, 95, 779–799.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department 2: Physics of the EarthGFZ German Research Centre for GeosciencesPotsdamGermany