Encyclopedia of Solid Earth Geophysics

Editors: Harsh K. Gupta

Seismic, Receiver Function Technique

Reference work entry
DOI: https://doi.org/10.1007/978-90-481-8702-7_12


Receiver functions; Scattered teleseismic waves


Receiver function. Response of the Earth’s structure below seismic stations to incident teleseismic waves. Seismic discontinuities in the Earth’s crust or upper mantle cause waves from distant earthquakes to be converted from P to S waves or vice versa, or to be multiply reflected between discontinuities before arriving the stations. Such scattered waves carry information about the seismic structure of the lithosphere and upper mantle. Scattered waves are weak signals and summation of many records is usually required to visualize the useful information.

Receiver function technique

If a seismic wave hits a discontinuity between two solid materials with different physical parameters, a part of the wave will be reflected and another part will be transmitted. There is also mode conversion between compressional (P) waves and shear (S) waves (see  Energy Partitioning of Seismic Waves). Therefore, a P wave crossing a...
This is a preview of subscription content, log in to check access


  1. Ammon, C. J., Randall, G. E., and Zandt, G., 1990. On the nonuniqueness of receiver function Inversions. Journal of Geophysical Research, 95, 15303–15318.Google Scholar
  2. Baig, A. M., Bostock, M. G., and Mercier, J.-P., 2005. Spectral reconstruction of teleseismic Green’s functions. Journal of Geophysical Research, 110, B08306.Google Scholar
  3. Bock, G., 1994. Multiples as precursors of S, SKS and ScS. Geophysical Journal International, 119(2), 421–427.Google Scholar
  4. Bostock, M. G., 2002. Kirchhoff-approximate inversion of teleseismic wave fields. Geophysical Journal International, 149, 787–795.Google Scholar
  5. Bostock, M. G., 2004. Green’s functions, source signatures, and the normalization of teleseismic wave fields. Journal of Geophysical Research, 109.Google Scholar
  6. Dueker, K. G., and Sheehan, A. F., 1997. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. Journal of Geophysical Research, 102, 8313–8327.Google Scholar
  7. Gurrola, H., Baker, G. E., and Minster, J. B., 1995. Simultaneous time-domain deconvolution with application to the computation of receiver functions. Geophysical Journal International, 120, 537–543.Google Scholar
  8. Hansen, S., and Dueker, K., 2009. P- and S-Wave Receiver Function Images of Crustal Imbrication beneath the Cheyenne Belt in Southeast Wyoming. Bulletin. Seismological Society of America, 99, 1953–1961, doi:10.1785/0120080168.Google Scholar
  9. Jacobsen, B. H., and Svenningsen, L., 2008. Enhanced uniqueness and linearity of receiver function inversion. Bulletin. Seismological Society of America, 98, 1756–1767.Google Scholar
  10. Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., and Suyehiro, K., 2009. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science, 324, 499–502.Google Scholar
  11. Kennett, B. L. N., and Engdahl, E. R., 1991. Travel times for global earthquake location and phase identification. Geophysical Journal International, 105, 429–465.Google Scholar
  12. Kind, R., 1985. The reflectivity method for different source and receiver structures and comparison with GRF data. Journal of Geophysics, 58, 146–152.Google Scholar
  13. Kind, R., and Vinnik, L. P., 1988. The upper-mantle discontinuities underneath the GRF array from P-to-S converted phases. Journal of Geophysics, 62, 138–147.Google Scholar
  14. Kind, R., Kosarev, G. L., and Petersen, N. V., 1995. Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophysical Journal International, 121, 191–202.Google Scholar
  15. Kosarev, G., Kind, R., Sobolev, S. V., Yuan, X., Hanka, W., and Oreshin, S., 1999. Seismic evidence for a detached Indian Lithospheric mantle beneath Tibet. Science, 283, 1306–1309.Google Scholar
  16. Kumar, P., Kind, R., and Yuan, X. H., 2010. Receiver function summation without deconvolution. Geophysical Journal International, 180, 1223–1230.Google Scholar
  17. Langston, C. A., 1979. Structure under Mount Rainer, Washington, inferred from teleseismic body waves. Journal of Geophysical Research, 84, 4749–4762.Google Scholar
  18. Langston, C. H. A., and Hammer, J. K., 2001. The vertical component P-wave receiver function. Bulletin. Seismological Society of America, 91(6), 1805–1819.Google Scholar
  19. Levin, V., and Park, J., 1997. P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophysical Journal International, 131, 253–266.Google Scholar
  20. Li, X. Q., Yuan, X. H., and Kind, R., 2007. The lithosphere-asthenosphere boundary beneath the western United States. Geophysical Journal International, 170(2), 700–710.Google Scholar
  21. Ligorria, J. P., and Ammon, C. J., 1999. Iterative deconvolution and receiver function estimation. Bulletin. Seismological Society of America, 89, 1395–1400.Google Scholar
  22. Mohsen, A., Hofstetter, R., Bock, G., Kind, R., Weber, M., Wylegalla, K., Rumpker, G., and DESERT Group, 2005. A receiver function study across the Dead Sea Transform. Geophysical Journal International, 160, 948–960.Google Scholar
  23. Montalbetti, J. F., and Kanasewich, E. R., 1970. Enhancement of teleseismic body phases with a polarization filter. Geophysical Journal International, 21(2), 119–129.Google Scholar
  24. Rondenay, S., 2009. Upper mantle imaging with array recordings of converted and scattered teleseismic waves. Surveys in Geophysics, 30, 377–405.Google Scholar
  25. Ryberg, T., and Weber, M., 2000. Receiver function array: a reflection seismic approach. Geophysical Journal International, 41, 1–11.Google Scholar
  26. Schulte-Pelkum, V., Monsalve, G., Sheehan, A., Pandey, M. R., Sapkota, S., Bilham, R., and Wu, F., 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435, 1222–1225, doi:10.1038/nature03678.Google Scholar
  27. Vinnik, L. P., 1977. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors, 15, 39–45.Google Scholar
  28. Yuan, X., Kind, R., Li, X., and Wang, R., 2006. S receiver functions: synthetics and data example. Geophysical Journal International, 175(2), 555–564.Google Scholar
  29. Yuan, X., Li, X., Wölbern, I., and Kind, R., 2007. Tracing the Hawaiian mantle plume by converted seismic waves. In Ritter, J. R. R., and Christensen, U. R. (eds.), Mantle Plumes – A Multidisciplinary Approach. Berlin: Springer, pp. 49–69.Google Scholar
  30. Zhu, L. P., and Kanamori, H., 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research, 150, 2969–2980.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Helmholtz Centre PotsdamGFZ German Research Centre for Geosciences, Section 2.4, SeismologyPotsdamGermany
  2. 2.Section SeismologyGFZ German Research Centre for GeosciencesPotsdamGermany