From Biosilica of Sponges (Demospongiae and Hexactinellida) to Fabricated Biomedical Materials

  • Xiaohong Wang
  • Heinz C. Schröder
  • Matthias Wiens
  • Lu Gan
  • Wolfgang Tremel
  • Werner E. G. Müller
Reference work entry

Abstract

Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the bottom of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873–1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They have been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. During the German Deep Sea Expedition “Valdivia” (1898–1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, which likewise forms the largest biosilica structure, the giant basal spicule. Using such spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be acquired. They are formed by a proteinaceous scaffold (composed of a 27-kDa protein), which mediates the formation of siliceous lamellae that encase the protein. The 27-kDa protein represents an enzyme that forms polysilicate from silicic acid monomers. The silica matrix is composed of almost pure silicon and oxygen, providing it with unusual optophysical properties that are superior to those of man-made waveguides. Experiments suggest that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules are provided with exceptional mechanical properties, combining mechanical stability with strength and stiffness. These basic insights, obtained from the spicule formation in sponges, will surely contribute to a further applied utilization and exploration of silica in biomaterial/biomedical science.

Keywords

Axial Cylinder Siliceous Sponge Axial Filament Axial Canal Spicule Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

W.E.G.M. is holder of an ERC Advanced Investigator Grant (No. 268476 – BIOSILICA). This work was supported by grants from the German Bundesministerium für Bildung und Forschung (Project “Center of Excellence BIOTECmarin”), the Deutsche Forschungsgemeinschaft (Schr 277/10-1), the International Human Frontier Science Program, the European Commission (Grant No. 031541-BIO-LITHO [biomineralization for lithography and microelectronics]), the consortium BiomaTiCS at the Universitätsmedizin of the Johannes Gutenberg-Universität Mainz, and the Public Welfare Project of Ministry of Land and Resources of the People’s Republic of China (Grant No. 201011005–06).

References

  1. 1.
    Müller WEG (2001) How was the metazoan threshold crossed? The hypothetical Urmetazoa. Comp Biochem Physiol A 129:433–460CrossRefGoogle Scholar
  2. 2.
    Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) Bauplan of urmetazoa: basis for genetic complexity of metazoa. Int Rev Cytol 235:53–92PubMedCrossRefGoogle Scholar
  3. 3.
    Schulze FE (1887) Report on the Hexactinellida collected by H.M.S. Challenger during the Years 1873–76. In: Sir. C. Wyville Thomson, Knt., F.R.S., & C. Regius (ZOOLOGY Part LIII), Murray J (eds) Report of the scientific results of the voyage of H.M.S., LondonGoogle Scholar
  4. 4.
  5. 5.
    Müller WEG, Li J, Schröder HC, Qiao L, Wang XH (2007) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232CrossRefGoogle Scholar
  6. 6.
    Wang XH, Hu S, Gan L, Wiens M, Müller WEG (2010) Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: biomineralization and the concept of their evolutionary success. Terra Nova 22:1–11CrossRefGoogle Scholar
  7. 7.
    Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232CrossRefGoogle Scholar
  8. 8.
    Müller WEG, Wang XH, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM, Schröder HC (2007) Formation of siliceous spicules in demosponges: example Suberites domuncula. In: Bäuerlein E (ed) Handbook of biomineralization, vol 1, The biology of biominerals structure formation. Wiley-VCH, Weinheim, pp 59–82CrossRefGoogle Scholar
  9. 9.
    Müller WEG, Schloßmacher U, Wang XH, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008) Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica-polymerase and silica-esterase). FEBS J 275:362–370PubMedCrossRefGoogle Scholar
  10. 10.
    Wöhler F (1828) Ueber künstliche Bildung des Harnstoffs. Annalen Physik Chemie 12:253–256Google Scholar
  11. 11.
    Pasteur L (1857) Mémoire sur la fermentation appelée lactique. Mém Soc Sci Agric et Arts 5:13–26Google Scholar
  12. 12.
    Müller WEG, Batel R, Schröder HC, Müller IM (2004) Traditional and modern biomedical prospecting: I. The history. Sustainable exploitation of biodiversity (sponges and invertebrates) in the adriatic sea at Rovinj (Croatia). Evid Based Complement Altern Med 1:71–82CrossRefGoogle Scholar
  13. 13.
    Aizenberg J, Sundar VC, Yablon AD, Weaver JC, Chen G (2004) Biological glass fibers: correlation between optical and structural properties. Proc Natl Acad Sci USA 101:3358–3363PubMedCrossRefGoogle Scholar
  14. 14.
    Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzel P (2005) Skeleton of Euplectella sp.: structural hierarchy from nanoscale to the macroscale. Science 309:275–278PubMedCrossRefGoogle Scholar
  15. 15.
    Schröder HC, Brandt D, Schloßmacher U, Wang XH, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007) Enzymatic production of biosilica-glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:339–359PubMedCrossRefGoogle Scholar
  16. 16.
    Schröder HC, Wang XH, Tremel W, Ushijima H, Müller WEG (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474PubMedCrossRefGoogle Scholar
  17. 17.
    Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29CrossRefGoogle Scholar
  19. 19.
    Wang XH, Müller WEG (2009) Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol 27:375–383PubMedCrossRefGoogle Scholar
  20. 20.
    Wang XH, Gan L, Müller WEG (2009) Contribution of biomineralization during growth of polymetallic nodules and ferromanganese crusts from the Pacific Ocean. Front Mater Sci China 3:109–123CrossRefGoogle Scholar
  21. 21.
    Perry CC (2003) Silicification: the process by which organisms capture and mineralize silica. Rev Miner Geochem 54:291–327CrossRefGoogle Scholar
  22. 22.
    Müller WEG (2005) Spatial and temporal expression patterns in animals. In: Meyers RA (ed) Encyclopedia of molecular cell biology and molecular medicine, vol 13. Wiley-VCH, Weinheim, pp 269–309Google Scholar
  23. 23.
    Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887PubMedCrossRefGoogle Scholar
  24. 24.
    Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238PubMedCrossRefGoogle Scholar
  25. 25.
    Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365PubMedCrossRefGoogle Scholar
  26. 26.
    Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297PubMedCrossRefGoogle Scholar
  27. 27.
    Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120PubMedCrossRefGoogle Scholar
  28. 28.
    Müller WEG, Boreiko A, Schloßmacher U, Wang XH, Tahir MN, Tremel W, Brandt D, Kaandorp JA, Schröder HC (2007) Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials 28:4501–4511PubMedCrossRefGoogle Scholar
  29. 29.
    Roux M, Bouchet P, Bourseau JP, Gaillard C, Grandperrin R, Guille A, Laurin B, Monniot C, Richer de Forges B, Rio M, Segonzac M, Vacelet J, Zibrowius H (1991) L’environment bathyal au large de la Nouvelle-Calédonie: résultats preliminaries de la campagne CALSUB et consequences paléoécologiques. Bull Soc Geol France 162:675–685Google Scholar
  30. 30.
    Wang XH, Schröder HC, Müller WEG (2009) Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni: morphology, biochemistry, and molecular biology. Int Rev Cell Mol Biol 273:69–115PubMedCrossRefGoogle Scholar
  31. 31.
    Müller WEG, Wang XH, Kropf K, Ushijima H, Geurtsen W, Eckert C, Tahir MN, Tremel W, Boreiko A, Schloßmacher U, Li J, Schröder HC (2008) Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. J Struct Biol 161:188–203PubMedCrossRefGoogle Scholar
  32. 32.
    Schulze FE (1904) Hexactinellida. In: Chun C (ed) Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899. Gustav Fischer, JenaGoogle Scholar
  33. 33.
    Müller WEG, Jochum K, Stoll B, Wang XH (2008) Formation of giant spicule from quartz glass by the deep sea sponge Monorhaphis. Chem Mater 20:4703–4711CrossRefGoogle Scholar
  34. 34.
    Müller WEG, Wang XH, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Wiens M (2008) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351PubMedCrossRefGoogle Scholar
  35. 35.
    Müller WEG, Boreiko A, Schloßmacher U, Wang XH, Eckert C, Kropf K, Li J, Schröder HC (2008) Identification of a silicatein(−related) protease in the giant spicules of the deep sea hexactinellid Monorhaphis chuni). J Exp Biol 211:300–309PubMedCrossRefGoogle Scholar
  36. 36.
    Müller WEG, Eckert C, Kropf K, Wang XH, Schloßmacher U, Seckert C, Wolf SE, Tremel W, Schröder HC (2007) Formation of the giant spicules of the deep sea hexactinellid Monorhaphis chuni (Schulze 1904): electron microscopical and biochemical studies. Cell Tissue Res 329:363–378PubMedCrossRefGoogle Scholar
  37. 37.
    Schröder H-C, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673PubMedCrossRefGoogle Scholar
  38. 38.
    Murr MM, Morse DE (2005) Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA 102:11657–11662PubMedCrossRefGoogle Scholar
  39. 39.
    Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009PubMedCrossRefGoogle Scholar
  40. 40.
    Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147PubMedCrossRefGoogle Scholar
  41. 41.
    Müller WEG, Kasueske M, Wang XH, Schröder HC, Wang Y, Pisignano D, Wiens M (2009) Luciferase a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula. Cell Mol Life Sci 66:537–552PubMedCrossRefGoogle Scholar
  42. 42.
    Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidin-tagged silicatein. Chem Commun 24:2848–2849CrossRefGoogle Scholar
  43. 43.
    Tahir MN, Théato P, Müller WEG, Schröder HC, Borejko A, Faiss S, Janshoff A, Huth J, Tremel W (2005) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem Commun (Camb) 44:5533–5535CrossRefGoogle Scholar
  44. 44.
    Tahir MN, Eberhardt M, Théato P, Faiß S, Janshoff A, Gorelik T, Kolb U, Tremel W (2006) Reactive polymers: a versatile toolbox for the immobilization of functional molecules on TiO2 nanoparticles. Angew Chem Int Ed 45:908–912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Xiaohong Wang
    • 2
    • 1
  • Heinz C. Schröder
    • 1
  • Matthias Wiens
    • 1
  • Lu Gan
    • 2
  • Wolfgang Tremel
    • 3
  • Werner E. G. Müller
    • 1
  1. 1.Institute for Physiological ChemistryMedical Center of the Johannes Gutenberg UniversityMainzGermany
  2. 2.National Research Center for GeoanalysisBeijingChina
  3. 3.Institute for ChemistryJohannes Gutenberg University MainzMainzGermany

Personalised recommendations