Encyclopedia of Agrophysics

2011 Edition
| Editors: Jan Gliński, Józef Horabik, Jerzy Lipiec

Agrophysics: Physics Applied to Agriculture

  • Jan Gliński
  • Józef Horabik
  • Jerzy Lipiec
Reference work entry
DOI: https://doi.org/10.1007/978-90-481-3585-1_11

Definition

Agrophysics is a science that studies physical processes and properties affecting plant production. The fundaments of agrophysical investigations are mass (water, air, nutrients) and energy (light, heat) transport in the soil–plant–atmosphere and soil–plant–machine–agricultural products–foods continuums and way of their regulation to reach biomass of high quantity and quality with the sustainability to the environment. The knowledge of physical phenomena in agricultural environment allows increasing efficiency of use of water and chemicals in agriculture and decreasing biomass losses during harvest, transport, storage, and processing.

Short history

The term agrophysicswas proposed by the Russian physicist A.F. Ioffe (1880–1960) to cover the relations within the soil environment, and especially those of the mass and energy transfer in the soil–plant–atmosphere system (The Agrophysical Institute of the Russian Academy of Agricultural Sciences in Saint-Petersburg: The Roots...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Ad Litteram DREAM, 2009. A European project coordinated by the BIA research unit. Newsletter of the INRA Centre of Angers-Nantes, July 2009, p. 29.Google Scholar
  2. Aghbashlo, M., Kianmehr, M. H., Khani, S., and Ghasemi, M., 2009. Mathematical modelling of thin-layer drying of carrot. International Agrophysics, 23, 1–5.Google Scholar
  3. Armstrong, A. C., Legros, J. P., and Voltz, M., 1996. ACCESS-II: detailed model for crop growth and water conditions. International Agrophysics, 10, 171–184.Google Scholar
  4. Arnold, R. W., Szabolcs, I., and Targulian, V. O., (eds.), 1990. Global soil change. Report of an IIASA-ISSS-UNEP Task Force on the Role of Soil in Global Change. IIASA, Laxenburg, Austria.Google Scholar
  5. Baranowski, P., and Walczak, R. T., 2004. Method and Methodology for Determination of Basic Physical Characteristics of Porous Media with Application of TDR Technology. Lublin: Institute of Agrophysics PAS.Google Scholar
  6. Baranowski, P., Usowicz, B., and Walczak, R. T., 2005. Evapotranspiration into the Boundary Layer of the Atmosphere. Lublin: Institute of Agrophysics PAS.Google Scholar
  7. Bieganowski, A., and Walczak, R. T., 2004. Problems of standardization of soil physics methods. In Józefaciuk, G. (ed.), Physics, Chemistry and Biogeochemistry in Soil and Plant Studies. Lublin: Institute of Agrophysics PAS, pp. 31–33.Google Scholar
  8. Bieganowski, A., Józefaciuk, G., and Walczak, R. T., 2004. Modern Physical and Physicochemical Methods and Their Applications in Agroecological Research. Lublin: Institute of Agrophysics PAS.Google Scholar
  9. Blahovec, J., 2008. Agromaterials Study Guide. Prague: Czech University of Life Sciences.Google Scholar
  10. Blahovec, J., and Kutilek, M. (eds.), 2003. Physical Methods in Agriculture. New York: Kluwer Academic.Google Scholar
  11. Chesworth, W. (ed.), 2008. Encyclopaedia of Soil Science. Dordrecht: Springer.Google Scholar
  12. De Baerdemaeker, J., and Vandewalle, J. (eds.), 1995. Control Applications in Post-harvest and Processing technology (CAPPT’95). A postprint volume from the 1st IFAC/CIGR/EURAGENE/ISHS Workshop, Ostend, Belgium, 1–2 June 1995. International Federation of Automatic Control, Laxenburg (Austria), p. 321.Google Scholar
  13. Dębicki, R., Fijałkowska, A., Gliński, J., Hajnos, M., Konstankiewicz, K., Kupryś, P., Lipiec, J., and Martin-Aranda, J., 1991. Dictionary of Agrophysics in Six Languages: English, German, Spanish, French, Polish and Russian. Lublin: Institute of Agrophysics PAS.Google Scholar
  14. Dobrzanski, B., jr, Robaczewski, J., and Rybczyński, R., 2006. Handling of Apple Transport Techniques and Efficiency Vibration, Damage and Bruising, Texture, Firmness and Quality. Lublin: Institute of Agrophysics PAS.Google Scholar
  15. Fernandez, J. E., Sławiński, C., Moreno, F., Lamorski, K., Walczak, R. T., and Vanclooster, M., 2004. Experimental verification of the agrophysical models. In Matyka-Sarzyńska, D., and Walczak, R. T. (eds.), Basic Problems of Agrophysics. Lublin: Institute of Agrophysics PAS, pp. 41–49.Google Scholar
  16. Frączek, Z., and Ślipek, Z., 2009. Significance of agrophysics in the area of agriculture and technical investigations (in Polish). Biuletyn Informacyjny PTA, 29, 6–16.Google Scholar
  17. Gliński, J., 1992. Agrophysics in modern agriculture. International Agrophysics, 6, 1–7.Google Scholar
  18. Gliński, J., and Konstankiewicz, K., 1991. Methods and Equipment for Agrophysical Investigations. I. Soil. Problemy Agrofizyki 64, Ossolineum, Wrocław.Google Scholar
  19. Gliński, J., and Konstankiewicz, K., 1991. Methods and Equipment for Agrophysical Investigations. II. Plant Material. Problemy Agrofizyki 65, Ossolineum, Wrocław.Google Scholar
  20. Gliński, J., and Lipiec, J., 1990. Soil Physical Conditions and Plant Roots. Boca Raton: CRC Press.Google Scholar
  21. Gliński, J., and Stępniewski, W., 1985. Soil Aeration and Its Role for Plants. Boca Raton: CRC Press.Google Scholar
  22. Gliński, J., Józefaciuk, G., and Stahr, K., 2004. Soil – Plant – Atmosphere Aeration and Environmental Problems. Lublin: Institute of Agrophysics PAS.Google Scholar
  23. Gliński, J., Lipiec, J., and Stępniewski, W., 2008. Plant roots and soil physical factors. In Chesworth, W. (ed.), Encyclopaedia of Soil Science. Dordrecht: Springer, pp. 571–578.Google Scholar
  24. Haman, J., 1988. Soil-Plant-Machine Relations – The Base for Agricultural Machine Design. Physical Properties of Agricultural Materials and Products. New York: Hemisphere Publishing Corporation, pp. 63–69.Google Scholar
  25. Haman, J., 2003. Agrophysics (in Polish). Nauka, 1, 53–60.Google Scholar
  26. Haman, J., and Pukos, A., 1983. Problems of physical equations in agricultural properties of soil. Zeszyty Problemowe Postępów Nauk Rolniczych, 220(II), 337–345.Google Scholar
  27. Hanks, R. J., and Askroft, G. L., 1980. Applied Soil Physics. Berlin: Springer.Google Scholar
  28. Hartge, K. H., and Horn, R., 1991. Einfuhrung in die Bodenphysic. Suttgart: Ferdinand Enke Verlag.Google Scholar
  29. Heldman, D. R. (ed.), 2003. Encyclopedia of Agricultural, Food, and Biological Engineering. New York: Taylor and Francis.Google Scholar
  30. Hillel, D., 1972. Optimizing the Soil Physical Environment towards Greater Crop Yield. New York: Academic Press.Google Scholar
  31. Hillel, D., 1982. Introduction to Soil Physics. San Diego: Academic Press.Google Scholar
  32. Hillel, D., 1998. Environmental Soil Physics. San Diego: Academic Press.Google Scholar
  33. Hillel, D., 2004. Introductionto Environmental Physics. Amsterdam/Boston: Elsevier/Academic.Google Scholar
  34. Hillel, D., 2007. Soil in the Environment. San Diego: Elsevier.Google Scholar
  35. Holst, J. M. F. G., Ooi, J. Y., Rotter, J. M., and Rong, G. H., 1999a. Numerical modeling of silo filling I: continuum analyses. Journal of Engineering Mechanics-ASCE, 125, 94–103.Google Scholar
  36. Holst, J. M. F. G., Ooi, J. Y., Rotter, J. M., and Rong, G. H., 1999b. Numerical modeling of silo filling II. Discrete element analyses. Journal of Engineering Mechanics-ASCE, 125, 104–110.Google Scholar
  37. Horabik, J., and Laskowski, J., 2005a. Mechanical Properties of Granular Agro-materials and Food Powders for Industrial Practice. Part I. Characterization of Mechanical Properties of Particulate Solids for Storage and Handling. Lublin: Institute of Agrophysics PAS.Google Scholar
  38. Horabik, J., and Laskowski, J., 2005b. Mechanical Properties of Granular Agro-materials and Food Powders for Industrial Practice. Part II. Material Properties for Grinding and Agglomeration. Lublin: Institute of Agrophysics PAS.Google Scholar
  39. Horn, R., van den Akker, J. J. H., and Arvidsson, J. (eds.), 2000. Subsoil compaction – distribution, processes and consequences. Advances in GeoEcology, 32. Catena Verlag, Reiskirchen, Germany 460 p.Google Scholar
  40. Husar, I., 1985. Agromechanics. International Agrophysics, 1, 23–39.Google Scholar
  41. Jackman, R. L., and Stanley, D. W., 1995. Perspective in the textural evaluation of plant foods. Trends in Food Science and Technology, 6, 187–194.Google Scholar
  42. Józefaciuk, G., 2004. Physics, Chemistry and Biogeochemistry in Soil and Plant Studies. Lublin: Institute of Agrophysics PAS.Google Scholar
  43. Józefaciuk, G., Sokołowska, Z., and Hajnos, M., 2004. Physical Chemistry of Soil: Surface and Pore Properties. Lublin: Institute of Agrophysics PAS.Google Scholar
  44. Konstankiewicz, K., and Pytka, J., 2008. Soil engineering. In Chesworth, W. (ed.), Encyclopedia of Soil Science. Dordrecht: Springer, pp. 646–656.Google Scholar
  45. Konstankiewicz, K., and Zdunek, A., 2005. Micro-structure Analysis of Plant Tissue. Lublin: Institute of Agrophysics PAS.Google Scholar
  46. Koolen, A. J., and Kuipers, H., 1983. Agricultural Soil Mechanics. Berlin/New York: Springer.Google Scholar
  47. Koorevaar, P., Menelik, G., and Dirkens, C., 1999. Elements of Soil Physics. Amsterdam: Elsevier.Google Scholar
  48. Kutilek, M., and Nielsen, D. R., 1994. Soil Hydrology. Cremblingen-Destedt: Catena Verlag.Google Scholar
  49. Lal, R., and Shukla, M. J., 2004. Principles of Soil Physics. Boca Raton: CRC Press.Google Scholar
  50. Lamorski, K., Walczak, R., Sławiński, C., and Witkowska-Walczak, B., 2004. Validation and sensitivity analysis of heat transport model in soil profile. In Bieganowski, A., Józefaciuk, G., and Walczak, R. T. (eds.), Modern Physical and Physicochemical Methods and their Applications in Agroecological Research. Lublin: Institute of Agrophysics PAS, pp. 102–109.Google Scholar
  51. Letey, J., 1989. Relationship between soil physical properties and crop production. Advances in Soil Science, I, 277–294.Google Scholar
  52. Lipiec, J., Arvidsson, J., and Murer, E., 2003. Review of modelling crop growth, movement of water and chemicals in relation to topsoil and subsoil compaction. Soil and Tillage Research, 73, 15–29.Google Scholar
  53. Lipiec, J., Walczak, R., and Józefaciuk, G., 2004. Plant Growth in Relation to Soil Physical Conditions. Lublin: Institute of Agrophysics PAS.Google Scholar
  54. Loveland, P. J., 1996. The ACCESS project: Agro-climatic change and European soil suitability – a spatially distributed soil, agro-climatic and soil hydrological model. International Agrophysics, 10, 145–153.Google Scholar
  55. Marshall, T. J., Holmes, J. W., and Rose, C. W., 1996. Soil Physics. New York: Cambridge University Press.Google Scholar
  56. Matyka-Sarzyńska, D., and Walczak, R. T., 2004. Basic Problems of Agrophysics. Lublin: Institute of Agrophysics PAS.Google Scholar
  57. Mazurek, W., Walczak, R. T., Sobczuk, H. A., and Baranowski, P., 1996. The model investigation of soil water content and soil water potential impact on radiation temperature of meadow plant cover. Zeszyty Problemowe Postępów Nauk Rolniczych, 436, 93–100.Google Scholar
  58. Mohsenin, N. N., 1986. Physical Properties of Plant and Animal Materials, 2nd edn. New York: Gordon and Breach.Google Scholar
  59. Monteith, J., and Unsworth, M., 2007. Principles of Environmental Physics. San Diego: Academic.Google Scholar
  60. Penman, H. I., 1948. Physics in agriculture. Journal of Scientific Instruments, 25, 425–432.Google Scholar
  61. Przestalski, S., 2001. Significance of physics in agricultural science (in Polish). Postępy Nauk Rolniczych, 3, 47–56.Google Scholar
  62. Przestalski, S., 2009. Elements of Biophysics and Agrophysics (in Polish). Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego.Google Scholar
  63. Pukos, A., 1994. Quantitative descriptions of structural changes in soil and plant material during deformation. International Agrophysics, 8, 103–112.Google Scholar
  64. Ravenet, J., 1981. Silo problems. Bulk Solids Handling, 1(4), 667–679.Google Scholar
  65. Raytchev, T., Józefaciuk, G., Sokołowska, Z., and Hajnos, M., 2005a. Physicochemical Management of Acid Soils Polluted with Heavy Metals. Lublin: Institute of Agrophysics PAS.Google Scholar
  66. Raytchev, T., Józefaciuk, G., Sokołowska, Z., and Hajnos, M., 2005b. Physicochemical Character of Soil Adsorbents. Lublin: Institute of Agrophysics PAS.Google Scholar
  67. Russel, R. S., 1977. Plant Root Systems: Their Function and Interaction with the Soil. London: McGraw-Hill.Google Scholar
  68. Sahin, S., and Sumnu, S. G., 2006. Physical Properties of Foods, Food Science Text Series. New York: Springer.Google Scholar
  69. Scott, H. D., 2000. Soil Physics: Agriculture and Environmental Applications. Ames: Iowa State University Press.Google Scholar
  70. Shein, E. V., and Goncharov, V. M., 2000. Agrophysics (in Russian). Feniks: Rostov-on-Don.Google Scholar
  71. Skierucha, W., and Malicki, M., 2004. TDR Method for the Measurement of Water Content and Salinity of Porous Media. Lublin: Institute of Agrophysics PAS.Google Scholar
  72. Skierucha, W., and Walczak, R. T., 2004. Monitoring and Modelling the Properties of Soil as Porous Medium: the Role of Soil Use. Lublin: Institute of Agrophysics PAS.Google Scholar
  73. Skierucha, W., Walczak, R. T., and Wilczek, A., 2004. Monitoring Systems for Verification of Mass and Energy Transport Models in Porous Media. Lublin: Institute of Agrophysics PAS.Google Scholar
  74. Sławiński, C., Sobczuk, H., and Walczak, R. T., 1996. Submodel of bypass flow in cracking soils. Part 1 – theory. International Agrophysics, 10, 189–195.Google Scholar
  75. Sławiński, C., Witkowska-Walczak, B., and Walczak, R. T., 2004. Determination of Water Conductivity Coefficient of Soil Porous Media. Lublin: Institute of Agrophysics PAS.Google Scholar
  76. Smithson, P., Addison, K., and Atkinson, K., 2002. Fundaments of the Physical Environment, 2nd edn. London/New York: Routledge and Hungry Minds.Google Scholar
  77. Stępniewski, W., Stępniewska, Z., Bennicelli, R., and Gliński, J., 2005. Oxygenology in Outline. Lublin: Institute of Agrophysics PAS.Google Scholar
  78. Szczesniak, A. S., 2002. Texture is a sensory property. Food Quality and Preference, 13, 215–225.Google Scholar
  79. Szot, B., 1976. Variability of the mechanical properties of cereal plants. Zeszyty Problemowe Postępów Nauk Rolniczych, 203, 17–26.Google Scholar
  80. Szot, B., Stępniewski, A., and Rudko, T., 2005. Arophysical Properties of Lentil (Lens culinaris Medik.). Lublin: Institute of Agrophysics PAS.Google Scholar
  81. Szymanek, M., Dobrzański, B., jr, Niedziółka, I., and Rybczyński, R., 2006. Sweet Corn Harvest and Technology Physical Properties and Quality. Lublin: Institute of Agrophysics PAS.Google Scholar
  82. Usowicz, B., and Usowicz, J. B., 2004. Spatial and Temporal Variation of Selected Physical and Chemical Properties of Soil. Lublin: Institute of Agrophysics PAS.Google Scholar
  83. Usowicz, B., Lipiec, J., Marczewski, W., and Ferraro, A., 2006. Thermal conductivity modelling of terrestrial soil media – a comparative study. Planetary and Space Science, 54, 1086–1095.Google Scholar
  84. van Genuchten, M. Th, 1980. A closed-form equation for predicting hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.Google Scholar
  85. Walczak, R. T., 1987. Basic problems of mass and energy transfer in the soil-plant-atmosphere system. Zeszyty Problemowe Postępów Nauk Rolniczych, 346, 11–22.Google Scholar
  86. Walczak, R., 1993. New aspects of agrophysical metrology (in Polish). Nauka Polska, 4, 74–76.Google Scholar
  87. Walczak, R. T., and Zawadzki, S., 1979. Soil water as a basic factor of the growth and crop field of plants. Zeszyty Problemowe Postępów Nauk Rolniczych, 220(I), 53–59.Google Scholar
  88. Walczak, R. T., Sobczuk, H., and Sławiński, C., 1996. Submodel of bypass flow in cracking soils. Part 2 – experimental validation. International Agrophysics, 10, 197–207.Google Scholar
  89. Walczak, R. T., Witkowska-Walczak, B., and Baranowski, P., 1997. Soil structure parameters in models of crop growth and field prediction. Physical submodels. International Agrophysics, 11, 111–127.Google Scholar
  90. Warrick, A. W., 2002. Soil Physics Companion. Boca Raton: CRC Press.Google Scholar
  91. Weatherley, D., 2006. MATH3203 Lecture 1 Mathematical Modeling and ODEs. Earth Systems Science Computational Centre, University of Queensland, February 27, 2006.Google Scholar
  92. William, A. J., and Horton, R., 2004. x. Hoboken: Wiley.Google Scholar
  93. Wischmeier, W. H., and Smith, D. D., 1978. Predicting rainfall erosion losses. Agricultural Handbook No. 537. Washington, DC: USDA Agricultural Research Service.Google Scholar
  94. Witkowska-Walczak, B., Walczak, R., and Sławiński, C., 2004. Determination of Water Potential-Moisture Characteristics of Soil Porous Media. Lublin: Institute of Agrophysics PAS.Google Scholar
  95. Włodarczyk, T., and Kotowska, U., 2005. Nitrogen Transformations and Redox Potential Changes in Irrigated Soil. Lublin: Institute of Agrophysics PAS.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of AgrophysicsPolish Academy of SciencesLublinPoland