Encyclopedia of Snow, Ice and Glaciers

2011 Edition
| Editors: Vijay P. Singh, Pratap Singh, Umesh K. Haritashya

Glacier Lake Outburst Floods

  • Lasafam IturrizagaEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-90-481-2642-2_196

Synonyms

Aluviones; Débâcles; Glacial outwash floods; Gletscherlauf (German); Jökulhlaup (Icelandic); Megafloods and superfloods (Quaternary large-scaled glacier floods)

Definition

Glacier lake outburst floods (GLOFs) refer to sudden and in some cases cyclic release of meltwater from a glacier-dammed or moraine-dammed lake, which can result in a catastrophic flood. Thorarinsson (1939) introduced the term “jökulhlaup” for glacial floods due to the cataclysmic drainage of subglacial lakes in Iceland. It was originally referred to outburst floods triggered by volcanic activity and has been subsequently transferred to a variety of other types of glacial floods. It has become a widely used synonym for describing catastrophic glacial floods in general.

The size of glacial lakes varies considerably and the lakes may hold up to tens of millions of cubic meters of water. Glacier lake outbursts produce flows of water that may be an order of magnitude greater than average rainfall-derived peak...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Ageta, Y., Iwata, S., Yabuki, H., Naito, N., Sakai, A., Narama, C., and Karma, C., 2000. Expansion of glacier lakes in recent decades in the Bhutan Himalayas. In Proceedings of the Seattle Workshop 2000. Debris-Covered Glaciers. IAHS, Publication no. 264, pp. 165–175.Google Scholar
  2. Allen, S. K., Schneider, D., and Owens, I. F., 2009. First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s Southern Alps. Natural Hazards and Earth System Sciences, 9, 481–499.Google Scholar
  3. Ames, A., 1998. A documentation of glacier tongue variations and lake development in the Cordillera Blanca, Peru. Zeitschrift für Gletscherkunde und Glazialgeologie, 34(1), 1–36.Google Scholar
  4. Baker, V., 2001. Water and the martian landscape. Nature, 412, 228–236.Google Scholar
  5. Baker, V. R., Benito, G., and Rudoy, A. N., 1993. Paleohydrology of Late Pleistocene superflooding, Altay Mountains, Siberia. Science, 259, 348–350.Google Scholar
  6. Baker, V. R., and Bunker, R., 1985. Cataclysmic late Pleistocene flooding from glacial lake Missoula: a review. Quaternary Science Reviews, 4, 1–41.Google Scholar
  7. Baker, V. R., Kochel, C. R., and Patton, P. C., 1988. Flood Geomorphology. New York: Wiley, p. 503.Google Scholar
  8. Barry, R. G., Williams, M. W., and Racoviteanu, A. E., 2008. Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors, 8, 3355–3383.Google Scholar
  9. Baudo, R., Tartari, G., and Vuillermoz, E., 2007. Mountains Witnesses of Global Changes: Research in the Himalaya and Karakoram: Share-Asia Project: Research in the Himalaya and Karakoram: SHAREAsia Project (Developments in Earth Surface Processes). Amsterdam: Elsevier, p. 350.Google Scholar
  10. Benn, D. I., and Evans, D. J. A., 1998. Glaciers and Glaciation. London: Arnold.Google Scholar
  11. Benn, D. I., Wiseman, S., and Hands, K. A., 2001. Growth and drainage of supraglacial lakes on debrismantled Ngozumpa Glacier, Khumbu Himal, Nepal. Journal of Glaciology, 47(159), 626–638.Google Scholar
  12. Björnsson, H., 2003. Subglacial lakes and jökulhlaups in Iceland. Global and Planetary Change, 35(3–4), 255–271.Google Scholar
  13. Blachut, S. P., and Ballantyne, C. K., 1976. Ice-Dammed Lakes: A Critical Review of their Nature and Behaviour. Hamilton, ON: Department of Geography, McMaster University. Discussion Paper 6.Google Scholar
  14. Bajracharya, S. R., and Mool, P., 2009. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Annals of Glaciology, 50(53), 81–86.Google Scholar
  15. Breien, H., De Blasio, Fabio V., Elverhøi, A., and Høeg, K., 2008. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides, 5, 271–280.Google Scholar
  16. Bretz, J. H., 1923. The Channeled Scabland of the Columbia plateau. Journal of Geology, 31, 617–649.Google Scholar
  17. Burbank, D. W., 1983. Multiple episodes of catastrophic flooding in the Peshawar Basin during the past 700000 years. Geological Bulletin University of Peshawar, 16, 43–49.Google Scholar
  18. Bürgisser, H. M., Gansser, A., and Pika, J., 1982. Late Glacial lake sediments of the Indus valley area, northwestern Himalayas. Eclogae Geologicae Helvetiae, 75, 51–63.Google Scholar
  19. Carey, M., 2005. Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru. Global and Planetary Change, 47, 122–134.Google Scholar
  20. Carling, P. A., Kirkbride, A. D., Parnachov, S., Borodavko, P. S., and Berger, G. W., 2002. Late quaternary catastrophic flooding in the Altai Mountains of south-central Siberia: a synoptic overview and an introduction to flood deposit sedimentology. In Martini, P., Baker, V., and Garon, G. (eds.), Flood and Megaflood Processes and Deposits. Oxford: Blackwell, Vol. 32, pp. 17–35.Google Scholar
  21. Carrivick, J. L., 2006. 2D modelling of high-magnitude outburst floods; an example from Kverkfjö ll, Iceland. Journal of Hydrology, 321, 187–199.Google Scholar
  22. Chikita, K. A., 2008. The expansion mechanism of Himalayan supraglacial lakes: observations and modelling. Himalayan Journal of Sciences, 2(4), 118–120.Google Scholar
  23. Clague, J. J., and Evans, S. E., 1994. Formation and failure of natural dams in the Canadian Cordillera. Bulletin-Geological Survey of Canada, 464, 35.Google Scholar
  24. Clague, J. J., and Evans, S. G., 2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews, 19, 1763–1783.Google Scholar
  25. Clarke, G., Leverington, D., Teller, J., and Dyke, A., 2003. Enhanced: superlakes, megafloods, and abrupt climatic change. Science, 301(5635), 922–931.Google Scholar
  26. Clayton, L., 1964. Karst topography on stagnant glaciers. Journal of Glaciology, 5(37), 107–112.Google Scholar
  27. Cornwell, K., 1998. Quaternary break-out flood sediments in the Peshawar basin of northern Pakistan. Geomorphology, 25, 225–248.Google Scholar
  28. Costa, J. E., 1988. Rheologic, Geomorphic, and Sedimentologic Differentiation of Water Flood, Hyperconcentrated Flows, and Debris Flows. In Baker, V. R., Kochel, R. C., and Patton, P. C. (eds.), Flood Geomorphology. New York: Wiley, pp. 113–122.Google Scholar
  29. Costa, J. E., and Schuster, R. L., 1988. The formation and failure of natural dams. Geological Society of America Bulletin, 100, 1054–1068.Google Scholar
  30. Dainelli, G., 1922. Studi sul Glaciale. In Dainelli, G. (ed.), Relazione Scientifiche della Spedizione Italiana de Filippi, nell’Himalaia, Caracorum e Turchestan Cinese 1913–1914, Serei II. Resultati geologici e geografici, Vol. 3, volume of plates. Zanichelli, Bologna.Google Scholar
  31. Delisle, G., Reynolds, J. M., Hanisch, J., Pokhrel, A. P., and Pant, S., 2003. Lake Thulagi/Nepal: rapid landscape evolution in reaction to climatic change. Zeitschrift für Geomorphologie N.F., 130(Suppl), 1–9.Google Scholar
  32. Derbyshire, E., Jijun, L., Perrott, F. A., Suying, X., and Waters, R. S., 1984. Quaternary glacial history of the Hunza Valley, Karakoram Mountains, Pakistan. In Miller, K. J. (ed.), The International Karakoram Project. Cambridge: Cambridge University Press, Vol. 2, pp. 456–495.Google Scholar
  33. Desio, A., and Orombelli, G., 1983. The ‘Punjab erratics’ and the maximum extent of the glaciers in the middle lndus valley (Pakistan) during the Pleistocene. Atti della Accademia Nazionale dei Lincei, Series 8, 17(179), 135–180.Google Scholar
  34. Espizúa, L., and Bengochea, J. D., 1990. Surge of Grande deI Nevado Glacier (Mendoza, Argentina) in 1984: its evolution through satellite images. Geografiska Annaler, 72A(3–4), 255–259.Google Scholar
  35. Evans, S. G., and Clague, J. J., 1994. Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology, 10, 107–128.Google Scholar
  36. Fairen, A. G., and Dohm, J. M., 2003. Episodic flood inundations of the northern plains of Mars. Icarus, 165, 53–67.Google Scholar
  37. Ferguson, R. I., 1984. Sediment load of the Hunza River. In Miller, K. J. (ed.), The International Karakoram Project. Cambridge: Cambridge University Press, Vol. 2, pp. 581–598.Google Scholar
  38. Fujita, K., Suzuki, R., Nuimura, T., and Sakai, A., 2008. Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. Journal of Glaciology, 54(185), 220–228.Google Scholar
  39. Glen, J. W., 1954. The stability of ice-dammed lakes and other water-filled holes in glaciers. Journal of Glaciology, 2, 316–318.Google Scholar
  40. Grabs, W. E., Hanisch, J., 1993. Objectives and prevention methods for glacier lake outburst ßoods (GLOFs). In Young, G. J. (ed.), Snow and Glacier Hydrology. Wallingford: International Association of Hydrological Sciences Publication 218, pp. 341–352.Google Scholar
  41. Georges, C., 2004. The 20th-century glacier fluctuations in the tropical Cordillera Blanca (Peru). Arctic, Antarctic and Alpine Research, 36(1), 100–107.Google Scholar
  42. Grosswald, M. G., 1980. Late Weichselian ice sheets of Northern Eurasia. Quaternary Research, 13, 1–32.Google Scholar
  43. Gudmunsson, M. T., Sigmundsson, F., and Björnsson, H., 1997. Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature, 389, 954–957.Google Scholar
  44. Häberli, W., 1983. Frequency and characteristics of glacier floods in the Swiss Alps. Annals of Glaciology, 4, 85–90.Google Scholar
  45. Häberli, W., et al., 1999. Eisschwund und Naturkatastrophen im Hochgebirge. Zürich. (Schlussbericht im Rahmen des nationalen Forschungsprogrammes “Klimaänderungen und Naturkatastrophen”, NFP 31).Google Scholar
  46. Helbling, R., 1935. The origin of the Rio Plomo ice-dam. Geographical Journal, 85(1), 41–49.Google Scholar
  47. Herget, J., 2003. Eisstausee-Ausbrüche. Ursache für katastrophale Hochwasser. In Geographische Rundschau, 55, Heft Nr. 2, Seite 14–21.Google Scholar
  48. Herget, J., 2005. Reconstruction of Pleistocene ice-dammed lake outburst floods in Altai-Mountains. Siberia: Geological Society of America, Special Publication 386, 118 p.Google Scholar
  49. Hewitt, K., 1982. Natural dams and outburst floods of the Karakoram Himalaya. In Glen, J. W. (ed.), Hydrological Aspects of Alpine and High-Mountain Areas. International Commission on Snow and Ice (ICSI) Symposium, Exeter, UK, pp. 19–30 July 1982; Proceedings of International Association of Hydrological Sciences. IAHS/AISH Publication no. 138, pp. 259–269.Google Scholar
  50. Hewitt, K., 1998. Himalayan Indus streams in the holocene: glacier-, and landslide-“interrupted” fluvial systems. In Stellrecht, I. (ed.), Karakorum –Hindukush–Himalaya: Dynamics of Change. Part I, Culture Area Karakorum. Scientific Studies, 4(1), 3–28.Google Scholar
  51. Hoinkes, H., 1969. Surges of the Vernagtferner in the Ötztal Alps since 1599. Canadian Journal of Earth Sciences, 6, 845–551.Google Scholar
  52. Howarth, P. J., 1968. A supra-glacial extension of an ice-dammed lake, Tunsberg dalsbreen, Norway. Journal of Glaciology, 7, 414–419.Google Scholar
  53. Hubbard, B., Heald, A., Reynolds, J. M., Quincey, D. J., Richardson, S. D., Zapata, M., Santillan, N., and Hambrey, M. J., 2005. Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surface Processes and Landforms, 30, 1251–1264.Google Scholar
  54. Huggel, C., 2004. Assessment of glacial hazards based on remote sensing and GIS Modeling, University of Zurich. Available from http://www.dissertationen.unizh.ch/2004/huggel/diss.pdf
  55. Huggel, C., Haeberli, W., Kääb, A., Bieri, D., and Richardson, S., 2004. An assessment procedure for glacial hazards in the Swiss Alps. Canadian Geotechnical Journal, 41, 1068–1083.Google Scholar
  56. Iturrizaga, L., 1997. The valley of Shimshal – a geographical portrait of a remote high mountain settlement and its pastures with reference to environmental habitat conditions in the North West Karakorum. In Kuhle, M. (ed.), Tibet and High Asia IV, GeoJournal, 42(2/3), 305–328.Google Scholar
  57. Iturrizaga, L., 2003. The distribution and genesis of lateroglacial valleys in the Karakoram Mountains (Pakistan). Zeitschrift für Geomorphologie N.F., 130(Suppl), 51–74.Google Scholar
  58. Iturrizaga, L., 2005a. Historical ice-dammed lakes in the Karambar valley, Hindukush (Pakistan). In Kuhle, M. (ed.), Tibet and High Asia (VII): Glaciogeomorphology and Former Glaciation in the Himalaya and Karakorum. GeoJournal, 62(3–4), 1–47.Google Scholar
  59. Iturrizaga, L., 2005b. The historical Saklei Shuyinj and Chateboi glacier dams as trigger for lake outburst cascades in the Karambar valley (Hindukush). Island Arc, 14(4), 389–399.Google Scholar
  60. Iturrizaga, L., 2005c. New observations on glacier lake outbursts in the Shimshal valley. Journal of Asian Earth Sciences, 25, 545–555.Google Scholar
  61. Iturrizaga, L., 2006. Key forms for reconstructing glacier dams, glacier lakes and outburst floods. Historical ice-dammed lakes in the Karambar valley, Hindukush (Pakistan). Zeitschrift fur Geomorphologie Supplementband, 142, 361–388.Google Scholar
  62. Iturrizaga, L., 2007. Die Eisrandtäler im Karakorum: Verbreitung, Genese und Morphodynamik des lateroglazialen Sedimentformenschatzes. In Geography International. Aachen: Shaker Verlag, p. 389.Google Scholar
  63. Iturrizaga, L., 2008. Die Talschaft Chapursan – Zur Frage der geomorphologischen Genese von Schutthügellandschaften im Zusammenhang mit historischen Siedlungslandzerstörungen. In Berichte zur Geowissenschaft, Shaker Verlag Aachen, p. 116.Google Scholar
  64. Iturrizaga, L., 2011. Glacial lakes in the Hindukush-Karakoram Mountains and their hazard potential. Geophysical Research Abstracts, Volume 11, EGU2009-8062-1.Google Scholar
  65. Iturrizaga, L., in print. Trends in historical and recent glacier fluctuations in the Karakoram Mountains. In Schrott, L., Otto, J.-C., Stötter, H., Glade, T. (eds.), Zeitschrift für Geomorphologie.Google Scholar
  66. Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D., Strozzi, T., and Weidmann, Y., 2005a. Remote sensing of glacier- and permafrost related hazards in high mountains: an overview. Natural Hazards and Earth System Science, 5, 527–554.Google Scholar
  67. Kääb, A., Reynolds, J. M., and Haeberli, W., 2005b. Glacier and permafrost hazards in high mountains. In Huber, U. M., Burgmann, H. K. H., and Reasoner, M. A. (eds.), Global Change and Mountain Regions (A State of Knowledge Overview). Dordrecht: Springer, pp. 225–234.Google Scholar
  68. Kaser, G., and Osmaston, H., 2002. Tropical Glaciers. Cambridge: Cambridge University Press.Google Scholar
  69. Kattelmann, R., 2003. Glacial lake outburst floods in the Nepal Himalaya: a manageable hazard? Natural Hazards, 28(145–154), 2003.Google Scholar
  70. Kattelmann, R., and Watanabe, T., 1997. Draining Himalayan glacial lakes before they burst. Destructive water: water-caused natural disasters, their abatement and control. In Proceedings of the Conference, Anaheim, CA, June 1996. IAHS Publication no. 239, pp. 337–343.Google Scholar
  71. Knudsen, N. T., and Theakstone, W. H., 1988. Drainage of the Austre Okstindbreen icedammed lake, Okstindan, Norway. Journal of Glaciology, 34, 87–94.Google Scholar
  72. Knight, P. G., 1999. Glaciers. London: Routledge, 261 pp.Google Scholar
  73. Komori, J., Gurung, D. R., Iwata, S., and Yabuki, H., 2003. Variation and lake expansion of Chubda Glacier, Bhutan Himalayas, during the last 35 years. Bulletin of Glaciological Research, 21, 49–55.Google Scholar
  74. Korup, O., and Tweed, F., 2007. Ice, moraine and landslide dams in mountainous terrain. Quaternary Science Reviews, 26, 3406–3422.Google Scholar
  75. Kuhle, M., 2001. The maximum Ice Age (LGM) glaciation of the Central- and South Karakorum: an investigation of the heights of its glacier levels and ice thicknesses as well as lowest prehistoric ice margin positions in the Hindukush, Himalaya and in East-Tibet on the Minya Konka-massif. In Kuhle, M. (ed.), Tibet and High Asia (VI), Glacio-geomorphology and prehistoric Glaciation in the Karakorum and Himalaya. GeoJournal, 54(2–4), 109–396.Google Scholar
  76. Kuhle, M., 2002. Outlet glaciers of the Pleistocene (LGM) south Tibetian ice sheet between Cho Oyu and Shisha Pangma as potenial sources of former mega-floods. In Martini, P., Baker, V. R., Garzón, G. (eds.), Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. Special Publication of the International Association of Sedimentologists (IAS). Oxford: Blackwell Science, Vol. 32, pp. 291–302.Google Scholar
  77. Liestøl, O., 1956. Glacier dammed lakes in Norway. Norsk Geografisk Tidsskrift, 15, 122–149.Google Scholar
  78. Lliboutry, L., Morales, B., Pautre, A., and Schneider, B., 1977. Glaciological problems set by the control of dangerous lakes in the Cordillera Blanca, Peru. I. Historical failures of morainic dams, their causes and prevention. Journal of Glaciology, 18(79), 239–254.Google Scholar
  79. Maag, H., 1969. Ice Dammed Lakes and Marginal Glacial Drainage on Axel Heiberg Island. Axel Heiberg Island Research Report. Montreal: McGill University.Google Scholar
  80. Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G., Henriksen, M., Hjort, C., Krinner, G., Lunkka, J. P., Moller, P., Murray, A., Nikolskaya, O., Saarnisto, M., and John Inge Svendsen, J. I., 2004. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews, 23(11–13), 1313–1332. Quaternary Environments of the Eurasian North (QUEEN).Google Scholar
  81. Marcus, M. G., 1960. Periodic drainage of glacier dammed Tulsequah Lake, British Columbia. Geographical Review, 50, 89–106.Google Scholar
  82. Martini, P. I., Baker, V. R., and Garzo´ n, G., 2002. Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. Oxford: Blackwell, Vol. 32, Special Publication International Association of Sedimentologists.Google Scholar
  83. Mason, K., 1935. The study of the threatening glaciers. Geographical Journal, 85, 24–41.Google Scholar
  84. Mayer, C., Lambrecht, A., and Hagg, W., 2008. Post-drainage ice dam response at Lake Merzbacher, Inylchek glacier, Kyrgyzstan. Geografiska Annaler, Series A, 90A, 1, 87–96.Google Scholar
  85. McKillop, R. J., and Clague, J. J., 2007. Statistical, remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes. Global and Planetary Change, 56(1–2, Climate Change Impacts on Mountain Glaciers and Permafrost), 153–171.Google Scholar
  86. Montgomery, D. R., Hallet, B., Yuping, L., Finnegan, N., Anders, A., Gillespie, A., and Greenberg, H. M., 2004. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet. Quaternary Research, 62, 201–207.Google Scholar
  87. Mool, P. K., Bajracharya, S. R., Joshi, S. P., Sakya, K., and Baidya, A., 2002a. Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods Monitoring and early Warning Systems in the Hindu-Kush Himalayan Region, Nepal. Kathmandu, Nepal: International Center for Integrated Mountain Development, p. 227 S.Google Scholar
  88. Mool, P. K., Wangda, D., Bajracharya, S. R., Kunzang, K., Gurung, D. R., and Joshi, S. P., 2002b. Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods Monitoring and Early Warning Systems in the Hindu-Kush Himalayan region, Bhutan. Kathmandu, Nepal: International Center for Integrated Mountain Development, p. 364 S.Google Scholar
  89. Nye, J. F., 1976. Water flow in glaciers: jökulhlaups, tunnels and veins. Journal of Glaciology, 17, 181–207.Google Scholar
  90. O'Connor, J. E., and Costa, J. E., 1993. Geologic and hydrologic hazards in glacierized basins in North America resulting from 19th and 20th century global warming. Natural Hazards, 8, 121–140. 121.Google Scholar
  91. O'Connor, J. E., and Costa, J. E., 2004. The world's largest floods, past and present: their causes and magnitude. U.S. Geological Survey Circular 1254.Google Scholar
  92. Oerlemans, J., 2001. Glaciers and Climate Change. Rotterdam: A. A. Balkema.Google Scholar
  93. Owen, L. A., 1996. Quaternary lacustrine deposits in a high energy semi-arid mountain environment, Karakoram Mountains, northern Pakistan. Journal of Quaternary Science, 11(6), 461–483.Google Scholar
  94. Paffen, K. J., Pillewizer, W., and Schneider, H. J., 1956. Forschungen im Hunza-Karakorum. Erdkunde, 10, 1–33.Google Scholar
  95. Patzelt, G. (ed.), 1983. Die Berg- und Gletscherstürze vom Huascarán, Cordillera Blanca, Peru. Hochgebirgsforschung – High Mountain Research, 6. Arbeitsgemeinschaft für vergleichende Hochgebirgsforschung, München.Google Scholar
  96. Prieto, M. del R., 1986. The glacier dam on the Rio Plomo: a cyclic phenomenon?. Zeitschrift für Gletscherkunde und Glazialgeologie, 22(H. 1), 73–78 (Innsbruck).Google Scholar
  97. Post, A., and Mayo, L. R., 1971. Glacier-dammed lakes and outburst floods in Alaska: U.S. Geological Survey Hydrologic Investigations Atlas HA-455, 3 sheets, p. 10.Google Scholar
  98. Qinghua, F., 1991. Characteristics of glacier outburst flood in the Yarkant River, Karakorum Mountains. In Kuhle, M., and Daoming, X. (ed.), Tibet and High-Asia, Results of the Sino-German Joint Expeditions (II). GeoJournal, 25(2/3), 255–263.Google Scholar
  99. Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J. M., Hambrey, M. J., and Glasser, N. F., 2007. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global and Planetary Change, 56(1–2), 137–152.Google Scholar
  100. Reynolds, J. M., 1992. “The identification and mitigation of glacier-related hazards: Examples from the Cordillera Blanca, Peru”. In McCall, G. J. H., Laming, D. C. J., and Scott, S. (eds.), Geohazards. London: Chapman & Hall, pp. 143–157.Google Scholar
  101. Reynolds, J. M., 1999. Glacial HAZARD ASSESSMENT at Tsho Rolpa, Rolwaling, Central Nepal. Quarterly Journal of Engineering Geology, 32, 209–214.Google Scholar
  102. Reynolds, J. M., 2000. On the formation of supraglacial lakes on debris-covered glaciers. In Nakawo, M., Raymond, C. F., Fountain, A. (eds.), Debris-Covered Glaciers. Proceedings of a Workshop held at Seattle, Washington, DC, September 2000. Oxford: IAHS Publication, Vol. 264, pp. 153–4161.Google Scholar
  103. Reynolds, J. M., Dolecki, A., and Portocarrero, C., 1998. Construction of a drainage tunnel as part of glacial lake hazard mitigation at Hualcán, Cordillera Blanca, Peru. In Maund, J. G., and Eddleston, M. (eds.), Geohazards in Engineering Geology. London: Geological Society, Engineering Geology Special Publications 15, pp. 41–48.Google Scholar
  104. Richardson, S. D., and Reynolds, J. M., 2000a. Degradation of ice-cored moraine dams: implications for hazard development. In Nakawo, M., Raymond, C. F., and Fountain, A. (eds.), Debris-Covered Glaciers. Seattle: IAHS Publications, pp. 187–197.Google Scholar
  105. Richardson, S. D., and Reynolds, J. M., 2000b. An overview of glacial hazards in the Himalayas. Quaternary International, 65(66), 31–47.Google Scholar
  106. Rudoy, A. N., 2002. Glacier-dammed lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains. Quaternary International, 87(1), 119–140.Google Scholar
  107. Rushmer, E. L., 2007. Physical-scale modelling of jökulhlaups (glacial outburst floods) with contrasting hydrograph shapes. Earth Surface Processes and Landforms, 32, 954–963.Google Scholar
  108. Russell, A. J., 1994. Subglacial jökulhlaup deposition, Jotunheimen, Norway. Sedimentary Geology, 91, 1–14.Google Scholar
  109. Russell, A. J., 2007. Controls on the sedimentology of an icecontact jökulhlaup-dominated delta, Kangerlussuaq, West Greenland. Sedimentary Geology, 193(1–4), 131–148.Google Scholar
  110. Scott, C. H., 1992. Contemporary sediment transfer in Himalayan glacial systems: Implications for the interpretation of the Quaternary record (Ph.D. thesis). Leicester: University of Leicester, 343 pp.Google Scholar
  111. Shroder, J. F., Jr., Khan, M. S., Lawrence, R. D., Madin, I. P., and Higgins, S. M., 1989. Quaternary glacial chronology and neo-tectonics. In Malinconico, L. L., Lillie, R. J. (eds.), Tectonics of the Western Himalayas. Boulder, Colorado: Geological Society of America, Special Paper, 232, pp. 275–294.Google Scholar
  112. Shroder, J. F., Jr., 1993. Himalaya to the Sea: geology, geomorphology and the Quaternary of Pakistan in the regional context. In Shroder, J. F., Jr. (ed.), Himalaya to the Sea: Geology, Geomorphology and the Quaternary. New York: Routledge, pp. 1–42.Google Scholar
  113. Stone, K. H., 1963. Alaskan ice-dammed lakes. Annals of the Association of American Geographers, 53, 332–349.Google Scholar
  114. Sturm, M., Beget, J., and Benson, C., 1987. Observations of jökulhlaups from ice-dammed Strandline lake, Alaska: implications for paleohydrology. In Mayer, L., and Nash, D. (eds.), Catastrophic Flooding. The Binghampton Symposia in Geomorphology, 18. London: Allen and Unwin, pp. 79–94.Google Scholar
  115. Teller, J. T., Leverington, D. W., and Mann, J. D., 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews, 21(8–9), 879–887.Google Scholar
  116. Thorarinsson, S., 1939. The ice-dammed lakes of Iceland, with particular reference to their values as indicators of glacier oscillations. Geografiska Annaler, 21, 216–242.Google Scholar
  117. Thorarinsson, S., 1953. Some new aspects of the Grímsvötn problem. Journal of Glaciology, 2, 267–274.Google Scholar
  118. Tufnell, L., 1984. Glacier Hazards. London: Longman Group, p. 95.Google Scholar
  119. Tweed, F. S., and Russell, A. J., 1999. Controls on the formation and sudden drainage of glacier-impounded lakes: implications for jökulhlaup characteristics. Progress in Physical Geography, 23, 79–110.Google Scholar
  120. Vilímek, V., Zapata Luyo, M., Klimes, J., Patzelt, Z., and Santillan, N., 2005. Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides, 2, 107–115.Google Scholar
  121. Vuichard, D., and Zimmermann, M., 1987. The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: causes and consequences. Mountain Research and Development, 7, 91–110.Google Scholar
  122. Walder, J. S., and Costa, J. E., 1996. Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surface Processes and Landforms, 21, 701–723.Google Scholar
  123. Watanabe, T., Ives, J. D., and Hammond, J. E., 1994. Rapid growth of a glacier lake in Khumbu Himal, Nepal: prospects for a catastrophic flood. Mountain Research and Development, 14, 329–340.Google Scholar
  124. Watanabe, T., Kameyama, S., and Sato, T., 1995. Imja Glacier dead-ice melt rates and changes in a supra-glacial lake, 1989–1994, Khumbu Himal, Nepal: danger of lake drainage. Mountain Research and Development, 15, 293–300.Google Scholar
  125. Watanabe, T., Lamsal, D., and Ives, J. D., 2009. Evaluating the growth characteristics of a glacial lake and its degree of danger of outburst flooding: Imja Glacier, Khumbu Himal, Nepal. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography, 63, 255–267.Google Scholar
  126. Welsch, W., and Kinzl, H., 1970. Der Gletschersturz vom Huascarán (Perú) am 31. Mai 1970. die größte Gletscherkatastrophe der Geschichte. Zeitschrift für Gletscherkunde und Glazialgeologie, 6(1–2), 181–192.Google Scholar
  127. Whalley, W. B., 1971. Observations of the drainage of an ice-dammed lake – Strupvatnet, Troms, Norway. Norsk Geografisk Tidsskrift, 25, 165–74.Google Scholar
  128. Xin, W., Shiyin, L., and Wanqin, G., 2008. Assessment and simulation of glacier lake outburst floods for Longbasaba and Pida Lakes, China. Mountain Research and Development, 28(3/4), 310–317.Google Scholar
  129. Yamada, T., 1998. Glacier Lake and Its Outburst Flood in the Nepal Himalaya. Tokyo: Data Center for Glacier Research, Japanese Society of Snow and Ice. Monograph No. 1, p. 96.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Geography/High Mountain GeomorphologyInstitute of Geography, University of GöttingenGöttingenGermany