Encyclopedia of Snow, Ice and Glaciers

2011 Edition
| Editors: Vijay P. Singh, Pratap Singh, Umesh K. Haritashya

Equilibrium-Line Altitude (ELA)

Reference work entry
DOI: https://doi.org/10.1007/978-90-481-2642-2_140


Snow line


The equilibrium-line altitude (ELA) marks the area or zone on a glacier separating the accumulation zone from the ablation zone and represents where annual accumulation and ablation are equal.


The equilibrium-line altitude (ELA) on glaciers is the average elevation of the zone where accumulation equals ablation over a 1-year period. The ELA can rarely be observed as a line at the same elevation across the entire width of the glacier due to local topographic and climatic variations in accumulation and ablation (Figure 1). Thus, the ELA is the average altitude of the equilibrium line. The ELA is very closely related to the local climate, particularly winter precipitation and summer air temperature. Variations in the ELA can therefore commonly be attributed to changes of these two variables. This can best be illustrated by its relationship to the net balance. The term net mass balance is the net gain or loss of ice and snow. The mass balance is...
This is a preview of subscription content, log in to check access.


  1. Bakke, J., Dahl, S. O., Paasche, O., Lovlie, R., and Nesje, A., 2005a. Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the Lateglacial and Holocene. Holocene, 15(4), 518–540.Google Scholar
  2. Bakke, J., Lie, Ø., Nesje, A., Dahl, S. O., and Paasche, Ø., 2005b. Utilizing physical sediment variability in glacier-fed lakes for continous glacier reconstructions during the Holocene, northern Folgefonna, western Norway. Holocene, 15(2), 161–176.Google Scholar
  3. Ballantyne, C., 2006. The Loch Lomond Readvance on north Arran, Scotland: glacier reconstruction and palaoclomatic implications. Journal of Quaternary Science, 22(4), 343–359.Google Scholar
  4. Benn, D. I., and Ballantyne, C., 2005. Palaeoclimatic reconstruction from Loch Lomond Readvance glacier in the West Drumochter Hills. Scotland Journal of Quaternary Science, 20(6), 577–592.Google Scholar
  5. Benn, D. I., and Gemmel, A. M. D., 1997. Calculating equilibrium-line altitudes of former glaciers by the balance ratio method: a new computer spreadsheet. Glacial Geology and Geomorphology, http://ggg.qub.ac.uk/ggg/.
  6. Benn, D. I., and Lehmkuhl, F., 2000. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65/66, 15–29.Google Scholar
  7. Birkeland, B. J., 1932. Altere meteorologische beobachtungen in Ullensvang, luftdruck und temperatur seit 100 Jahren Geofysiske publikasjoner IX (6), Det norske videnskaps-akademi i Oslo.Google Scholar
  8. Braithwaite, R. J., and Olesen, O. B., 1990. A simple energy balance model to calculate ice ablation at the margin of the Greenland ice sheet. Journal of Glaciology, 36, 222–228.Google Scholar
  9. Budd, W. F., and Smith, I. N., 1981. The growth and retreat of ice sheets in response to orbital radiation changes. In Allison, I., (ed.), Sea Level, Ice and Climatic Change, Oxfordshire: IAHS Publication 131, pp. 369–409.Google Scholar
  10. Dahl, S. O., and Nesje, A., 1992. Paleoclimatic implications based on equilibrium-line altitude depressions of reconstructed younger dryas and holocene cirque glaciers in inner Nordfjord, Western Norway. Palaeogeography, Palaeoclimatology, Palaeoecology, 94(1–4), 87–97.Google Scholar
  11. Dahl, S. O., and Nesje, A., 1996. A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjokulen, central southern Norway. Holocene, 6(4), 381–398.Google Scholar
  12. Dahl, S. O., Nesje, A., and Øvstedal, J., 1997. Cirque glaciers as morphological evidence for a thin Younger Dryas ice sheet in east-central southern Norway. Boreas, 26(3), 161–180.Google Scholar
  13. Dahl, S. O., Bakke, J., Lie, Ø., and Nesje, A., 2003. Reconstruction of former glacier equilibrium-line altitudes based on proglacial sites: an evaluation of approaches and selection of sites. Quaternary Science Reviews, 22, 275–287.Google Scholar
  14. Elvehøy, H., 1998. Samanlikning av massebalanse på Hardangerjøkulen og Folgefonna. In Elvehøy, H. (ed.), Oppdragsrapport. Norway: Norges vassdrag-og energiverk, pp. 1–27.Google Scholar
  15. Furbish, D. J., and Andrews, J. T., 1984. The use of hypsometry to indicate long-term stability and response to valley glaciers to changes in long-term stability and response of valley glaciers to changes in mass transfer. Journal of Glaciology, 30, 199–211.Google Scholar
  16. Gross, G., Kerschner, H., and Patzelt, G., 1976. Metodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. Zeitschrift für Gletscherkunde und Glazialgeologie, 12, 223–251.Google Scholar
  17. Gruell, W., and Oerlemans, J., 1986. Sensitivity studies with a mass-balance model including temperature profile calculations inside the glacier. Zeitschrift für Gletscherkunde und Glazialgeologie, 22, 101–124.Google Scholar
  18. Kuhn, M., 1989. The response of the equilibrium line altitude to climate fluctuations: theory and observations. In Oerlemans, J. (ed.), Glacier Fluctuations and Climate Change. Dordrecht: Kluwer, pp. 407–417.Google Scholar
  19. Laumann, T., and Reeh, N., 1993. Sensitivity to climate change of the mass balance of glaciers in southern Norway. Journal of Glaciology, 39, 656–665.Google Scholar
  20. Lehmkuhl, F., 1998. Quaterary glaciations in central and western Mongolia. Quaternary Proceedings, 6, 153–167.Google Scholar
  21. Lehmkuhl, F., Owen, L. A., and Derbyshire, E., 1998. Late Quaternary glaciel history of Northeast Tibet. Quaternary Proceedings, 6, 121–142.Google Scholar
  22. Leonard, E. M., 1985. Glaciological and climatic controls on lake sedimentation, Canadian Rocky Mountains. Zeitscrift für Gletcherkunde und Glazialgeologie 21, 35–42.Google Scholar
  23. Letreguilly, A., and Reynaud, L., 1989. Spatial patterns of mass balance fluctuations of North American glaciers. Journal of Glaciology, 35, 163–168.Google Scholar
  24. Lie, Ø., Dahl, S. O., and Nesje, A., 2003. Theoretical equilibrium-line altitudes and glacier buildup sensitivity in southern Norway based on meteorological data in a geographical information system. Holocene, 13, 373–380.Google Scholar
  25. Liestøl, O., 1967. Storbreen glacier in Jotunheimen. Norway: Norsk Polarinstitutt Skrifter 141.Google Scholar
  26. Louis, H., 1955. Schneegrenze und Schneegrenzbestimmung. Geographisches Taschenbuch 1954/55, pp. 414–418.Google Scholar
  27. Maisch, M., 1982. Zur Gletscher- und Klimageschichte des alpinen Spätglazials. Geographica Helvetica, 37, 93–904.Google Scholar
  28. Meierding, T. C., 1982. Late Pleistocene glacial equilibrium-line in the Colorado front range, A comparison of methods. Quaternary Research, 18, 289–310.Google Scholar
  29. Miller, G. H., Bradley, R. S., and Andrews, J. T., 1975. The glaciation level and lowest equilibrium line altitude in the high Canadian Arctic: maps and climatic interpretation. Arctic and Alpine Research, 7, 155–168.Google Scholar
  30. Nesje, A., and Dahl, S. O., 1991. Holocene glacier variations of Blaisen, Hardangerjokulen, Central Southern Norway. Quaternary Research, 35(1), 25–40.Google Scholar
  31. Nesje, A., and Dahl, S. O., 2000. Glaciers and Environmental Change. London: Arnold.Google Scholar
  32. Nesje, A., Dahl, S. O., and Lovlie, R., 1995. Late Holocene glaciers and avalanche activity in the Alfotbreen area, Western Norway – Evidence from a Lacustrine Sedimentary Record. Norsk Geologisk Tidsskrift, 75(2–3), 120–126.Google Scholar
  33. Nesje, A., Dahl, S. O., Andersson, C., and Matthews, J. A., 2000. The lacustrine sedimentary sequence in Sygneskardvatnet, western Norway: a continuous, high-resolution record of the Jostedalsbreen ice cap during the Holocene. Quaternary Science Reviews, 19(11), 1047–1065.Google Scholar
  34. Nesje, A., Matthews, J. A., Dahl, S. O., Berrisford, M. S., and Andersson, C., 2001. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene, 11(3), 267–280.Google Scholar
  35. Nesje, A., Jansen, E., Birks, H. J. B., Bjune, A., Bakke, J., Dahl, C. A., Dahl, S. O., Kiltgaard-Kristensen, D., Lauritzen, S. E., Lie, Ø., Risebrobakken, B., and Svendsen, J. I., 2005. Holocene climate variability in the northern North Atlantic region: a review of terrestrial and marine evidence. In Drange, H., Dokken, T., Furevik, T., Rüdiger, G., and Bergen, W., (eds.), The Nordic Seas: An Integrated Perspective, Geophysical Monograph Series, American Geophysical Union, Washington, 158, pp. 289–322.Google Scholar
  36. Oerlemans, J., 2001. Glaciers and climate change: a meteorologist’s view. Rotterdam: A.A. Balkema.Google Scholar
  37. Oerlemans, J., 2005. Extracting a climate signal from 169 glacier records. Science, 308(5722), 675–677.Google Scholar
  38. Ohmura, A., Kasser, P., and Funk, M., 1992. Climate at the equilibrium line of glaciers. Journal of Glaciology, 38, 397–411.Google Scholar
  39. Osmaston, H., 2005. Estimates of glacier equilibrium line altitudes by the area x altitude, the area x altitude balance ratio and the area x altitude balance index methods and their validation. Quaternary International, 138, 22–31.Google Scholar
  40. Paterson, W. S. B., 1994. The physics of glaciers. Oxford: Pergamon.Google Scholar
  41. Porter, S. C., 1975. Equilibrium line altitudes of late quaternary glaciers in the Southern Alps, New Zealand. Quaterary Research, 5, 27–47.Google Scholar
  42. Porter, S. C., Pierce, K. L., and Hamilton, T. D., 1983. Late Pleistocene glaciation in the western United States. In Porter, S. C., (ed.), Late Quaternary Environments in the United States. Minneapolis: University of Minnesota Press, pp. 71–111.Google Scholar
  43. Rea, B. R., 2009. Defining modern day area-altitude balance ratios (AABRs) and their use in glacier-climate reconstructions. Quaternary Science Reviews, 28(3–4), 237–248.Google Scholar
  44. Reeh, N., 1991. Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59, 113–128.Google Scholar
  45. Schytt, V., 1967. A study of “ablation gradient”. Geografiska Annaler, 49A, 327–332.Google Scholar
  46. Seierstad, J., Nesje, A., Dahl, S. O., and Simonsen, J. R., 2002. Holocene glacier fluctuations of Grovabreen and Holocene snow-avalanche activity reconstructed from lake sediments in Groningstolsvatnet, Western Norway. Holocene, 12(2), 211–222.Google Scholar
  47. Shi, Y., Zheng, B., and Li, S., 1992. Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: a controversy to M. Kuhle’s ice sheet hypothesis. Zeitschrift für Geomorphologie, B.F. (Suppl) 84, 19–35.Google Scholar
  48. Sissons, J. B., 1979. The loch lomond stadial in the British Isles. Nature, 280, 199–203.Google Scholar
  49. Torsnes, I., Rye, N., and Nesje, A., 1993. Modern and little ice age equilibrium-line altitudes on outlet valley glaciers from Jostedalsbreen, Western Norway: an evaluation of different approaches to their calculation. Arctic and Alpine Research, 25, 106–116.Google Scholar
  50. Tvede, A. M., 1979. Likninger til beregning av nettobalansen fra værdata. In Wold, B., and Repp, K. (eds.), Glasiologiske undersøkelser i Norge 1978, Norway: Norges Vassdrags og elektrisitetsvesen, p. 71.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Geography/Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  2. 2.Department of Earth Science/Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway