Skip to main content

Impacts of Sediment on Coral Reefs

  • Reference work entry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Introduction

The relationship between reefs and sediments has been observed by humans certainly for centuries, and possibly for millennia. Columbus observed that his ships could take on fresh water by avoiding the fringing reefs of South America and sailing into the mouths of the Orinoco (Morison, 1974). Moreover, that keen observer Charles Darwin noted that “The deposition… of sediment, checks the growth of coral-reefs” (Darwin, 1842).

Since the earliest seafarers noted that they could approach reef-barred coastlines at river mouths, because no reefs occurred there, we have known that sedimentation kills reefs. In fact, throughout geologic history (including the present), sediment must be considered one of the great killers of reefs. Notwithstanding this, the field still lacks the definitive body of research that would allow management teams to set objective standards and to craft appropriate legislation.

A geological perspective

A great deal of research has been conducted by...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-90-481-2639-2_25
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.00
Price excludes VAT (USA)
  • ISBN: 978-90-481-2639-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Impacts of Sediment on Coral Reefs. Figure 1
Impacts of Sediment on Coral Reefs. Figure 2
Impacts of Sediment on Coral Reefs. Figure 3

Bibliography

  • Abdel-Salam, H. A., and Porter, J. W., 1988. Physiological effects of sediment rejection on photosynthesis and respiration in three Caribbean reef corals. In Proceedings of Sixth International Coral Reef Symposium. Vol. 2, pp. 285–292.

    Google Scholar 

  • Acevedo, R., and Morelock, J., 1988. Effects of terrigenous sediment influx on coral reef zonation in southwestern Puerto Rico. In Proceedings of Sixth International Coral Reef Symposium. Australia: Townsville, Vol. 2, pp. 189–194.

    Google Scholar 

  • Acevedo, R., Morelock, J., and Olivieri, R. A., 1989. Modification of coral reef zonation by terrigenous sediment stress. Palaios, 4, 92–100.

    Google Scholar 

  • Adams, J. E., and Frenzel, H. N., 1950. Capitan Barrier Reef, Texas and New Mexico. Journal of Geology, 58, 289–312.

    Google Scholar 

  • Anderegg, D., Dodge, R. E., Swart, P. K., and Fisher, L., 1997. Barium chronologies from South Florida reef corals – environmental implications. In Proceedings of Eighth International Coral Reef Symposium. Vol. 2, pp. 1725–1730.

    Google Scholar 

  • Anthony, K. R., 1999. A tank system for studying benthic aquatic organisms at predictable levels of turbidity and sedimentation: case study examining coral growth. Limnology and Oceanography, 44, 1415–1422.

    Google Scholar 

  • Anthony, K. R. N., 2000. Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs, 19, 59–67.

    Google Scholar 

  • Anthony, K. R. N., and Hoegh-Guldberg, O., 2004. Kinetics of photoacclimation in corals. Oecologia, 134, 23–31.

    Google Scholar 

  • Bak, R. P. M., 1978. Lethal and sublethal effects of dredging on reef corals. Marine Pollution Bulletin, 9, 14–16.

    Google Scholar 

  • Bak, R. P. M., 1983. Neoplasia, regeneration and growth in the reef-building coral Acropora palmata. Marine Biology, 77, 221–227.

    Google Scholar 

  • Bak, R. P. M., and Elgershuizen, J. H. B. W., 1976. Patterns of oil-sediment rejection in corals. Marine Biology, 37, 715–730.

    Google Scholar 

  • Bak, R. P. M., and Steward-van Es, Y., 1980. Regeneration of superficial damage on the scleractinian corals Agaricia agaricites, F. purpurae and Porites asteroides. Bulletin of Marine Science, 30, 883–887.

    Google Scholar 

  • Barnard, L. A., Macintyre, I. G., and Pierce, J. W., 1974. Possible environmental index in tropical reef corals. Nature, 252, 210–220.

    Google Scholar 

  • Bastidas, C., and Garcia, E., 1997. Metal content in the reef coral Porites astreoides: an evaluation of river influence and 35 years of chronology. Marine Pollution Bulletin, 38, 899–907.

    Google Scholar 

  • Bothner, M. H., Reynolds, R. L., Casso, M. A., Storlazzi, C. D., and Field, M. E., 2006. Quantity, composition and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii. Marine Pollution Bulletin, 52, 1034–1047.

    Google Scholar 

  • Brown, B. E., LeTissier, M. D. A., Scoffin, T. P., and Tudhope, A. W., 1990. Evaluation of the environmental impact of dredging on intertidal coral reefs at KO Phuket, Thailand, using ecological and physiological parameters. Marine Ecology Progress Series, 65, 273–281.

    Google Scholar 

  • Budd, A. F., Mann, K. O., and Guzmàn, H. M., 1993. Environmental interpretation using insoluble residues within coral skeletons: problems, pitfalls and preliminary results. Coral Reefs, 12, 31–42.

    Google Scholar 

  • Calhoun, R. S., and Field, M. E., 2008. Sand composition and transport history on a fringing coral reef, Molokai, Hawaii. Journal of Coastal Research, 24, 1151–1160.

    Google Scholar 

  • Chansang, H., 1988. Coastal tin mining and marine pollution in Thailand. Ambio, 17, 223–228.

    Google Scholar 

  • Chansang, H., Boonyanate, P., and Charuchinda, M., 1981. Effect of sedimentation from coastal mining on coral reefs on the northwestern coast of Phuket Island. In Proceedings of Fourth International Coral Reef Symposium, Thailand. Vol. 1, pp. 129–136.

    Google Scholar 

  • Chou, L. M., 1997. The status of southeast Asian coral reefs. In Proceedings of Sixth International Coral Reef Symposium, Panama. Vol. 1, pp. 317–321.

    Google Scholar 

  • Cortes, J. N., and Risk, M. J., 1985. A reef under siltation stress: Cahuita, Costa Rica. Bulletin of Marine Science, 36, 339–356.

    Google Scholar 

  • Dallmeyer, D. G., Porter, J. W., and Smith, G. J., 1982. Effects of particulate peat on the behavior and physiology of the Jamaican reef-building coral Montastrea annularis. Marine Biology, 68, 229–234.

    Google Scholar 

  • Darwin, C. R., 1842. The Structure and Distribution of Coral Reefs. London: Smith Elder.

    Google Scholar 

  • David, C. P., 2003. Heavy metal concentrations in growth bands of corals: a record of mine tailings input though time (Marinduque Island, Philippines). Marine Pollution Bulletin, 46, 187–196.

    Google Scholar 

  • Davies, P. J., 1992. Are coral skeletons reliable recorders of sediment regimes? A method for its investigation. In Proceedings of the Seventh International Coral Reef Symposium, Guam. Vol. 1, 179–185.

    Google Scholar 

  • Dikou, A., and van Woesik, R., 2006. Survival under chronic stress from sediment load: spatial patterns of hard coral communities in the southern islands of Singapore. Marine Pollution Bulletin, 52, 7–21.

    Google Scholar 

  • Dodge, R. E., and Brass, G. W., 1984. Skeletal extension, density, and calcification of a reef coral (Montastrea annularis): St. Croix, U.S. Virgin Islands. Bulletin of Marine Science, 34, 288–307.

    Google Scholar 

  • Dodge, R. E., and Vaisnys, J. R., 1977. Coral populations and growth patterns: responses to sedimentation and turbidity associated with dredging. Journal of Marine Research, 35, 715–730.

    Google Scholar 

  • Dryer, S., and Logan, A., 1978. Holocene reefs and sediments of Castle Harbour, Bermuda. Journal of Marine Research, 36(3), 339–425.

    Google Scholar 

  • Edinger, E. N., and Risk, M. J., 1994. Oligocene–Miocene extinction and geographic restriction of Caribbean coral reefs: roles of temperature, turbidity, and nutrients. Palaios, 9, 576–598.

    Google Scholar 

  • Edinger, E. N., and Risk, M. J., 1999. Reef classification by coral morphology predicts coral reef conservation value. Biological Conservation, 92, 1–13.

    Google Scholar 

  • Edinger, E. N., Jompa, J., Limmon, G. V., Widjatmoko, W., and Risk, M. J., 1998. Reef degradation and coral biodiversity in Indonesia: effects of land-based sources of pollution, destructive fishing practices, and changes over time. Marine Pollution Bulletin, 36, 617–630.

    Google Scholar 

  • Edinger, E. N., Kolasa, J., and Risk, M. J., 2000a. Variation in within-site coral species diversity on coral reefs in three regions of Indonesia. Diversity and Distributions, 6, 113–127.

    Google Scholar 

  • Edinger, E. N., Limmon, G. V., Jompa, J., Widjatmoko, W., Heikoop, J. M., and Risk, M. J., 2000b. Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Marine Pollution Bulletin, 40, 404–425.

    Google Scholar 

  • Edinger, E. N., Azmy, K., Diegor, W., and Siregar, P. R., 2008. Heavy metal pollution from gold mining recorded in Porites lobata skeletons, Buyat-Ratototok district, Sulawesi, Indonesia. Marine Pollution Bulletin, 56, 1553–1569.

    Google Scholar 

  • Endean, R., 1976. Destruction and recovery of coral reef communities. In Jones, O. A., and Endean, R. (eds.), Biology and Geology of Coral Reefs. New York: Academic, Vo1. 3, Biology 2, pp. 215–254.

    Google Scholar 

  • Fabricius, K. E., 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50, 125–146.

    Google Scholar 

  • Fabricius, K., Wild, C., Wolanski, E., and Abele, D., 2003. Effects of transparent exopolymer particles (TEP) and muddy terrigenous sediments on the survival of hard coral recruits. Estuarine, Coastal and Shelf Science, 57, 613–621.

    Google Scholar 

  • Fallon, S. J., White, J. C., and McCullock, M. T., 2002. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochimica et Cosmochimica Acta, 66, 45–62.

    Google Scholar 

  • Fallon, S. J., McCulloch, M. T., and Alibert, C., 2003. Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs, 22, 389–404.

    Google Scholar 

  • Field, M. E., Cochran, S. A., Logan, J. B., and Storlazzi, C. D., 2008. The coral reef of south Moloka’i, Hawai’i – portrait of a sediment-threatened fringing reef. US Geological Survey Scientific Investigations Report, 2007-5101, 180 pp.

    Google Scholar 

  • Fleitmann, D., Dunbar, R. B., McCulloch, M., Mudelsee, M., Vuille, M., McClanahan, T. R., Cole, J. E., and Eggins, S., 2007. East African soil erosion recorded in a 300-year old coral colony from Kenya. Geophysical Research Letters, 34, L04401.

    Google Scholar 

  • Frost, S., and Langenheim, R., Jr., 1974. Cenozoic Reef Biofacies. DeKalb: Northern Illinois University Press, p. 388.

    Google Scholar 

  • Gabrié, C., Vasseur, P., Randriamiarana, H., Maharavo, J., and Mara, E., 2000. The coral reefs of Madagascar. In McClanahan, T. R., Sheppard, C. R., and Obura, D. (eds.), Coral Reefs of the Indian Ocean: Their Ecology and Conservation. Oxford: Oxford University Press, pp. 411–444.

    Google Scholar 

  • Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M., Dunbar, R. B., and Schrag, D. P., 2000. New views of tropical paleoclimates from corals. Quaternary Science Reviews, 19, 45–64.

    Google Scholar 

  • Gardner, W. D., 1980a. Sediment trap dynamics and calibration: a laboratory evaluation. Journal of Marine Research, 38, 17–39.

    Google Scholar 

  • Gardner, W. D., 1980b. Field assessment of sediment traps. Journal of Marine Research, 38, 41–52.

    Google Scholar 

  • Gass, S. E., and Roberts, J. M., 2006. The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment, and environmental controls on distribution. Marine Pollution Bulletin, 52, 549–559.

    Google Scholar 

  • Hallock, P., 2001. Coral reefs, carbonate sediments, nutrients, and global change. In Stanley, G. D. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer Topics in Geobiology, Vol. 17, pp. 388–427.

    Google Scholar 

  • Hallock, P., and Schlager, W., 1986. Nutrient excess and the demise of carbonate platforms. Palaios, 1, 389–398.

    Google Scholar 

  • Heikoop, J. M., Tsujita, C. J., Risk, M. J., and Tomascik, T., 1996. Corals as proxy recorders of volcanic activity: evidence from Banda Api, Indonesia. Palaios, 11, 286–292.

    Google Scholar 

  • Heikoop, J. M., Risk, M. J., Lazier, A. V., Edinger, E. N., Jompa, J., Limmon, G. V., Dunn, J. J., Browne, D. R., and Schwarcz, H. P., 2000. Nitrogen-15 signals of anthropogenic nutrient loading in reef corals. Marine Pollution Bulletin, 40, 628–636.

    Google Scholar 

  • Hodgson, G., 1990. Sediment and the settlement of larvae of the reef coral Pocillopora damicornis. Coral Reefs, 9, 41–43.

    Google Scholar 

  • Hodgson, G., 1994. Sedimentation damage to reef corals. In Ginsburg, R. N. (compiler), Proceedings of the Colloquium on Global Aspects of Coral Reefs: Health, Hazards and History. University of Miami, pp. 298–303.

    Google Scholar 

  • Hodgson, G., and Dixon, L. A., 1988. Logging versus fisheries and tourism in Palawan. Occasional Paper No. 7. Honolulu: East-West Environment and Policy Institute.

    Google Scholar 

  • Holmes, K. E., Edinger, E. N., Hariyadi, L. G. V., and Risk, M. J., 2000. Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Marine Pollution Bulletin, 40, 606–617.

    Google Scholar 

  • Hopley, D., van Woesik, R., Hoyal, D. W. D., Rasmussen, C. E., and Steven, A. D. L., 1990. Sedimentation resulting from road development, Cape Tribulation Area. Technical Memoir 24, Great Barrier Reef Marine Park Authority, 69 pp.

    Google Scholar 

  • Hopley, D., Smithers, S. G., and Parnell, K. E., 2007. Geomorphology of the Great Barrier Reef: Development, Diversity, and Change. Cambridge: Cambridge University Press, p. 532.

    Google Scholar 

  • Howard, L. S., and Brown, B. E., 1984. Heavy metals and reef corals. Oceanography and Marine Biology: Annual Review, 22, 195–210.

    Google Scholar 

  • Hubbard, J. A. E. B., and Pocock, Y. B., 1972. Sediment rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geologische Rundschau, 61, 598–626.

    Google Scholar 

  • Hughes, T. P., and Connell, J. H., 1999. Multiple stressors on coral reefs: a long-term perspective. Limnology and Oceanography, 44, 932–940.

    Google Scholar 

  • Johannes, R. E., 1975. Pollution and degradation of coral reef communities. In Wood, E. J. F., and Johannes, R. E. (eds.), Tropical Marine Pollution. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Johnson, K. G., Sánchez-Villagra, M. R., and Aguilera, O. A., 2009. The Oligocene–Miocene transition on coral reefs in the Falcón Basin (NW Venezuela). Palaios, 24, 59–69.

    Google Scholar 

  • Kershaw, S., 1998. The applications of stromatoporoid palaeobiology in palaeoenvironmental analysis. Palaeontology, 41, 509–544.

    Google Scholar 

  • Khaled, A., El-Nemr, A., and E-Sikaily, A., 2003. Contamination of coral reef by heavy metals along the Egyptian Red Sea Coast. Bulletin of Environmental Contamination and Toxicology, 71, 577–584.

    Google Scholar 

  • Kline, D. I., Kuntz, N. M., Breitbart, M., Knowlton, N., and Rohwer, F., 2006. Role of elevated organic carbon levels and microbial activity in coral mortality. Marine Ecology Progress Series, 314, 119–125.

    Google Scholar 

  • Lasker, H. R., 1980. Sediment rejection by reef corals: the roles of behaviour and morphology in Montastrea cavernosa (Linnaeus). Journal of Experimental Marine Biology and Ecology, 47, 77–87.

    Google Scholar 

  • Lepland, A., and Mortensen, P. B., 2008. Barite and barium in sediments and coral skeletons around the hydrocarbon exploration drilling site in the Traena Deep, Norwegian Sea. Environmental Geology, 56, 119–129.

    Google Scholar 

  • Lewis, J. B., 1977. Suspension feeding in Atlantic reef corals and the importance of suspended particulate matter as a food source. In Proceedings of Third International Coral Reef Symposium. Vol. 1, pp. 405–408.

    Google Scholar 

  • Logan, A., 1988. Sediment-shifting capability in the recent solitary coral Scolymia cubensis (Milne-Edwards and Haime) from Bermuda. Bulletin of Marine Science, 43, 241–248.

    Google Scholar 

  • Macintyre, I. G., Cortes, J., and Glynn, P. W., 1994. Anatomy of a dying coral reef: Punta Islotes Reef, Golfo Dulce, Costa Rica. In Ginsburg, R. N. (compiler), Proceedings of the Colloquium on Global Aspects of Coral Reefs: Health, Hazards and History. University of Miami, pp. 261–266.

    Google Scholar 

  • Maragos, J. E., 1974. Coral communities on a seaward reef slope, Fanning Island. Pacific Science, 28, 257–273.

    Google Scholar 

  • Maragos, J. E., Evans, C., and Holthus, P. J., 1985. Reef corals in Kaneohe Bay six years before and after termination of sewage discharges. In Proceedings of Fifth International Coral Reef Congress. Vol. 4, pp. 189–194.

    Google Scholar 

  • Marshall, S. M., and Orr, A. P., 1931. Sedimentation on Low Isles Reef and its relation to coral growth. Scientific Report of the Great Barrier Reef Expedition, 1, 94–133.

    Google Scholar 

  • Marszalek, D. S., 1981. Impact of dredging on a subtropical reef community, Southeast Florida, U.S.A. In Proceedings of Fourth International Coral Reef Symposium, Manila, Philippines. Vol. 1, pp. 147–153.

    Google Scholar 

  • McCulloch, M., Pailles, C., Moody, P., and Martin, C., 2003a. Tracing the source of sediment and phosphorus into the Great Barrier Reef lagoon. Earth and Planetary Science Letters, 210, 249–258.

    Google Scholar 

  • McCulloch, M. T., Fallon, S., Wyndham, T., Hendy, E., Lough, J., and Barnes, D., 2003b. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 421, 727–730.

    Google Scholar 

  • Morison, S. E., 1974. The European Discovery of America: The Southern Voyages 1492–1616. New York: Oxford University Press, p. 757.

    Google Scholar 

  • Nugues, M. M., and Roberts, C. M., 2003. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs. Marine Pollution Bulletin, 46, 314–323.

    Google Scholar 

  • Obura, D. O., Muthiga, N., and Watson, M., 2000. Kenya: 199–230. In McClanahan, T. R., Sheppard, C. R., and Obura, D. (eds.), Coral Reefs of the Indian Ocean: Their Ecology and Conservation. Oxford: Oxford University Press.

    Google Scholar 

  • Pastorok, R. A., and Bilyard, G. R., 1985. Effects of sewage pollution on coral-reef communities. Marine Ecology Progress Series, 21, 175–189.

    Google Scholar 

  • Perry, C. T., and Larcombe, P., 2003. Marginal and non-reef-building coral environments. Coral Reefs, 22, 427–432.

    Google Scholar 

  • Philipp, E., and Fabricius, K., 2003. Photophysiological stress in scleractinian corals in response to short-term sedimentation. Journal of Experimental Marine Biology and Ecology, 287, 57–78.

    Google Scholar 

  • Presto, M. K., Ogston, A. S., Storlazzi, C. D., and Field, M. E., 2006. Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii. Estuarine, Coastal and Shelf Science, 67, 67–81.

    Google Scholar 

  • Riegl, B., 1995. Effects of sand deposition on scleractinian and alcyonacean corals. Marine Biology, 121, 517–526.

    Google Scholar 

  • Risk, M. J., 1999. Paradise lost: how science and management failed the world’s coral reefs. Marine and Freshwater Research, 50, 831–837.

    Google Scholar 

  • Risk, M. J., Sammarco, P. W., and Schwarcz, H. P., 1994. Cross-continental shelf trends in δ13C in coral on the Great Barrier Reef. Marine Ecology Progress Series, 106, 121–130.

    Google Scholar 

  • Risk, M. J., Sherwood, O. A., Heikoop J. M., and Llewellyn, G., 2003. Smoke signals from corals: isotopic signature of the 1997 Indonesian “haze” event. Marine Geology, 202, 71–78.

    Google Scholar 

  • Risk, M. J., Lapointe, B. E., Sherwood, O. A., and Bedford, B. J., 2009. The use of δ15N in assessing sewage stress on coral reefs. Marine Pollution Bulletin, 58, 793–802.

    Google Scholar 

  • Roberts, H. H., and Murray, S. P., 1983. Controls on reef development and the terrigenous–carbonate interface on a shallow shelf, Nicaragua (Central America). Coral Reefs, 2, 71–80.

    Google Scholar 

  • Rogers, C. S., 1979. The effect of shading on coral reef structure and function. Journal of Experimental Marine Biology and Ecology, 41, 269–288.

    Google Scholar 

  • Rogers, C. S., 1983. Sublethal and lethal effects of sediments applied to common Caribbean reef corals in the field. Marine Pollution Bulletin, 14, 378–382.

    Google Scholar 

  • Rogers, C. S., 1990. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series, 62, 185–202.

    Google Scholar 

  • Rollion-Bard, C., Blamart, D., Cuif, J. P., and Juillet-Leclerc, A., 2003a. Microanalysis of C and O isotopes of a zooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs, 22, 405–415.

    Google Scholar 

  • Runnalls, L. A., and Coleman, M. L., 2003. Record of natural and anthropogenic changes in reef environments (Barbados West Indies) using laser ablation ICP-MS and sclerochronology on coral cores. Coral Reefs, 22, 416–426.

    Google Scholar 

  • Sammarco, P. W., and Risk, M. J., 1999. Cross-continental shelf trends in coral δ15N on the Great Barrier Reef: further considerations of the reef nutrient paradox. Marine Ecology Progress Series, 180, 131–138.

    Google Scholar 

  • Sheppard, C. R., Wilson, S. C., Salm, R. V., and Dixon, D., 2000. Reefs and coral communities of the Arabian Gulf and Arabian Sea. In McClanahan, T. R., Sheppard, C. R., and Obura, D. (eds.), Coral Reefs of the Indian Ocean: Their Ecology and Conservation. Oxford: Oxford University Press, pp. 257–294.

    Google Scholar 

  • Sinclair, D. J., 2005. Correlated trace element “vital effects” in tropical corals: a new geochemical tool for probing biomineralization. Geochimica et Cosmochimica Acta, 69, 3265–3284.

    Google Scholar 

  • Sinclair, D. J., Kinsley, L. P., and McCulloch, M. T., 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochimica et Cosmochimica Acta, 62, 1889–1901.

    Google Scholar 

  • Stafford-Smith, M. G., and Ormond, R. F. G., 1992. Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Australian Journal of Marine and Freshwater Research, 43, 683–705.

    Google Scholar 

  • Stafford-Smith, N. G., 1993. Sediment-rejection efficiency of 22 species of Australian scelractinian corals. Marine Biology, 115, 229–243.

    Google Scholar 

  • Syvitski, J. M. P., Vorosmaryt, C. J., Kettner, A. J., and Green, P., 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–380.

    Google Scholar 

  • Te, F. T., 1997. Turbidity and its effect on corals: a model using the extinction coefficient (K) of photosynthetic active radiance (PAR). In Proceedings of the Eighth International Coral Reef Symposium. Vol. 2, pp. 1899–1904.

    Google Scholar 

  • Telesnicki, G., and Goldberg, W., 1995. Effects of turbidity on the photosynthesis and respiration of 2 South Florida reef coral species. Bulletin of Marine Science, 57, 527–539.

    Google Scholar 

  • Tomascik, T., and Sander, F., 1985. Effect of eutrophication on reef-building corals. 1. Growth rate of the reef building coral Montastrea annularis. Marine Biology, 87, 143–155.

    Google Scholar 

  • Tomascik, T., and Sander, F., 1987. Effects of eutrophication on reef-building corals III. Reproduction of the reef-building coral Porites porites. Marine Biology, 94, 77–94.

    Google Scholar 

  • Tomascik, T., Suharsonom, A. J., and Mah, A., 1994. Case histories: a historical perspective of the natural and anthropogenic impacts in the Indonesian Archipelago with a focus on the Kepulauan Seribu, Java Sea. In Ginsburg, R. N. (compiler), Proceedings of the Colloquium on Global Aspects of Coral Reefs: Health, Hazards and History. University of Miami, pp. 304–310.

    Google Scholar 

  • Umbgrove, J. H. F., 1939. Madreporaria from the Bay of Batavia. Zoölogische Mededeelingin, 22, 1–64.

    Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. H., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, H., and Tilman, D. G., 1997. Human alteration of the global nitrogen cycle: source and consequences. Ecological Applications, 7, 737–750.

    Google Scholar 

  • Walker, K. R., and Alberstadt, L. P., 1975. Ecological succession as an aspect of structure in fossil communities. Paleobiology, 1, 238–257.

    Google Scholar 

  • Weber, M., Lott, K., and Fabricius, K. E., 2006. Sedimentation stress in a scleractinian coral exposed to terrestrial and marine sediments with contrasting physical, organic and geochemical properties. Journal of Experimental Marine Biology and Ecology, 336, 18–32.

    Google Scholar 

  • Wood, R., 1999. Reef Evolution. Oxford: Oxford University of Press, p. 414.

    Google Scholar 

Download references

Acknowledgments

The senior author performed much of the work for this article whilst in residence as a Temminck Fellow at the Natural History Museum in Leiden, Netherlands.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Risk, M.J., Edinger, E. (2011). Impacts of Sediment on Coral Reefs. In: Hopley, D. (eds) Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2639-2_25

Download citation