Low-Molecular-Weight Materials: Hole Injection Materials

  • Hirohiko FukagawaEmail author
Living reference work entry


Low-molecular-weight hole injection materials (HIMs) are categorized as small molecules with a strong acceptor and metal oxides, and halogen derivatives. Since the relationship between the substrate work function and the ionization energy of an organic layer is important for considering the hole injection barrier, not only the HIM-dependent OLED characteristics but also the energy diagram between the anode and HIM has been extensively studied using a Kelvin probe and by ultraviolet photoelectron spectroscopy. The hole injection barrier is defined as the energy difference between the Fermi level of the anode and the highest occupied molecular orbital level of the organic layer on the anode. In this chapter, both the improvement of device characteristics using HIMs and the detailed hole injection mechanisms are summarized.


Hole injection Electron transfer Surface work function 


  1. Campbell IH, Rubin S, Kress JD, Martin RL, Smith DL, Barashkov NN, Ferraris JP (1996) Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B 54:14321(R)ADSCrossRefGoogle Scholar
  2. Chan I-M, Hsu T-Y, Hong FC (2002) Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl Phys Lett 81:1899–1901ADSCrossRefGoogle Scholar
  3. Choi B, Rhee J, Lee HH (2001) Tailoring of self-assembled monolayer for polymer light-emitting diodes. Appl Phys Lett 79:2109–2111ADSCrossRefGoogle Scholar
  4. Duhm S, Salzmann I, Bröker B, Glowatzki H, Johnson RL, Koch N (2009) Interdiffusion of molecular acceptors through organic layers to metal substrates mimics doping-related energy level shifts. Appl Phys Lett 95:093305ADSCrossRefGoogle Scholar
  5. Gao W, Kahn A (2001) Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study. Appl Phys Lett 79:4040–4042ADSCrossRefGoogle Scholar
  6. Gao W, Kahn A (2003) Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine. J Appl Phys 94:359–366ADSCrossRefGoogle Scholar
  7. Gao C-H, Zhu X-Z, Zhang L, Zhou D-Y, Wang Z-K, Liao L-S (2013) Comparative studies on the inorganic and organic p-type dopants in organic light-emitting diodes with enhanced hole injection. Appl Phys Lett 102:153301ADSCrossRefGoogle Scholar
  8. Helander MG, Wang ZB, Qiu J, Greiner MT, Puzzo DP, Liu ZW, Lu ZH (2011) Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332:944–947ADSCrossRefGoogle Scholar
  9. Hung LS, Zheng LR, Mason MG (2001) Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3. Appl Phys Lett 78:673–675ADSCrossRefGoogle Scholar
  10. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605–625CrossRefGoogle Scholar
  11. Kanno H, Ishikawa K, Nishio Y, Endo A, Adachi C, Shibata K (2007) Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material. Appl Phys Lett 90:123509ADSCrossRefGoogle Scholar
  12. Kim Y-K, Kim JW, Park Y (2009) Energy level alignment at a charge generation interface between 4,4′-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile. Appl Phys Lett 94:063305ADSCrossRefGoogle Scholar
  13. Kim YH, Kwon S, Lee JH, Park SM, Lee YM, Kim JW (2011) Hole injection enhancement by a WO3 interlayer in inverted organic light-emitting diodes and their interfacial electronic structures. J Phys Chem C 115:6599–6604CrossRefGoogle Scholar
  14. Koch N, Duhm S, Rabe JP (2005) Optimized hole injection with strong electron acceptors at organic-metal interfaces. Phys Rev Lett 95:237601ADSCrossRefGoogle Scholar
  15. Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A (2009) Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl Phys Lett 95:123301ADSCrossRefGoogle Scholar
  16. Lee ST, Wang YM, Hou XY, Tang CW (1999) Interfacial electronic structures in an organic light-emitting diode. Appl Phys Lett 74:670–672ADSCrossRefGoogle Scholar
  17. Lüssem B, Riede M, Leo K (2013a) Doping of organic semiconductors. Phys Status Solidi A 210:9–43ADSCrossRefGoogle Scholar
  18. Lüssem B, Tietze ML, Kleemann H, bach CH, Bartha JW, Zakhidov A, Leo K (2013b) Doped organic transistors operating in the inversion and depletion regime. Nat Commun 4:2775ADSCrossRefGoogle Scholar
  19. Mason MG, Hung LS, Tang CW, Lee ST, Wong KW, Wang M (1999) Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. J Appl Phys 86:1688–1692ADSCrossRefGoogle Scholar
  20. Matsushima T, Kinoshita Y, Murata H (2007) Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers. Appl Phys Lett 91:253504ADSCrossRefGoogle Scholar
  21. Meyer J, Hamwi S, Bülow T, Johannes H-H, Riedl T, Kowalsky W (2007) Highly efficient simplified organic light emitting diodes. Appl Phys Lett 91:113506ADSCrossRefGoogle Scholar
  22. Meyer J, Kidambi PR, Bayer BC, Weijtens C, Kuhn A, Centeno A, Pesquera A, Zurutuza A, Robertson J, Hofmann S (2014) Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Sci Rep 4:5380ADSCrossRefGoogle Scholar
  23. Morii K, Ishida M, Takashima T, Shimoda T, Wang Q, Nazeeruddin MK, Grätzel M (2006) Encapsulation-free hybrid organic-inorganic light-emitting diodes. Appl Phys Lett 89:183510ADSCrossRefGoogle Scholar
  24. Nakayama Y, Morii K, Suzuki Y, Machida H, Kera S, Ueno N, Kitagawa H, Noguchi Y, Ishii H (2009) Origins of improved hole-injection efficiency by the deposition of MoO3 on the polymeric semiconductor poly(dioctylfluorene-alt-benzothiadiazole). Adv Funct Mater 19:3746–3752CrossRefGoogle Scholar
  25. Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K (2006a) Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%. Appl Phys Lett 89:063504ADSCrossRefGoogle Scholar
  26. Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K (2006b) High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer. Appl Phys Lett 89:013502ADSCrossRefGoogle Scholar
  27. Park CH, Lee HJ, Hwang JH, Kim KN, Shim YS, Jung S-G, Bae BH, Park CH, Lee DJ, Park YW, Ju BK (2015) High-efficiency hybrid buffer layer in inverted top-emitting organic light-emitting diodes. SID 2015 Digest 46:1647–1649CrossRefGoogle Scholar
  28. Pfeiffer M, Beyer A, Fritz T, Leo K (1998) Controlled doping of phthalocyanine layers by cosublimation: a systematic seebeck and conductivity study. Appl Phys Lett 73:3202–3204ADSCrossRefGoogle Scholar
  29. Qi D, Chen W, Gao X, Wang L, Chen S, Loh KP, Wee ATS (2007) Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane. J Am Chem Soc 129:8084–8085CrossRefGoogle Scholar
  30. Rana O, Srivastava R, Chauhan G, Zulfequar M, Husain M, Srivastava PC, Kamalasanan MN (2012) Modification of metal–organic interface using F4-TCNQ for enhanced hole injection properties in optoelectronic devices. Phys Status Solidi A 209:2539–2545ADSCrossRefGoogle Scholar
  31. Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010CrossRefGoogle Scholar
  32. Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K (1994) Multilayered organic electroluminescent device using a novel starburst molecule, ,4′,4′-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Appl Phys Lett 65:807–809ADSCrossRefGoogle Scholar
  33. Son S-H, Jang J-G, Jeon S-Y, Yoon S-H, Lee J-C, Kim K-K (2004) Electroluminescent devices with low work function anode. WO Patent 2004054326 A2Google Scholar
  34. Tang JX, Li YQ, Zheng LR, Hung LS (2004) Anode/organic interface modification by plasma polymerized fluorocarbon films. J Appl Phys 95:4397–4403ADSCrossRefGoogle Scholar
  35. Tokito S, Noda K, Taga Y (1996) Metal oxides as a hole-injecting layer for an organic electroluminescent device. J Phys D Appl Phys 29:2750–2753ADSCrossRefGoogle Scholar
  36. Van Slyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162ADSCrossRefGoogle Scholar
  37. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271CrossRefGoogle Scholar
  38. Wan A, Hwang J, Amy F, Kahn A (2005) Impact of electrode contamination on the α-NPD/Au hole injection barrier. Org Electron 6:47–54CrossRefGoogle Scholar
  39. Wang H, Klubek KP, Tang CW (2008) Current efficiency in organic light-emitting diodes with a hole-injection layer. Appl Phys Lett 93:093306ADSCrossRefGoogle Scholar
  40. Witte G, Lukas S, Bagus PS, Wöll C (2005) Vacuum level alignment at organic/metal junctions: “Cushion” effect and the interface dipole. Appl Phys Lett 87:263502ADSCrossRefGoogle Scholar
  41. Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K (2001) Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Appl Phys Lett 78:410–412ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Science & Technology Research LaboratoriesJapan Broadcasting Corporation (NHK)TokyoJapan

Section editors and affiliations

  • Hironori Kaji
    • 1
  1. 1.Division of Environmental Chemistry, Institute for Chemical ResearchKyoto UniversityKyotoJapan

Personalised recommendations