Advertisement

Outcoupling Technologies: Concepts, Simulation, and Implementation

  • Stéphane Altazin
  • Lieven Penninck
  • Beat RuhstallerEmail author
Living reference work entry

Abstract

Optimizing light out-coupling in organic light-emitting diodes (OLEDs) is at the heart of the development and commercialization of OLEDs for general lighting and display applications as it impacts directly the achievable luminous emission (lm/m2), luminous efficacy (lm/W), and even the lifetime. The improvement of light out-coupling requires having simulation tools at hand to efficiently simulate such OLEDs that include light out-coupling enhancement structures. In this chapter we will first describe the main concepts employed today to improve light out-coupling without employing scattering, and then we will introduce how light scattering-based out-coupling tricks can help to maximize the emitted luminance of the device. On this occasion, we will detail a modeling workflow that allows to accurately simulate OLEDs including scattering structures. In this part, we will make use of simulations in order to optimize the device efficiency. From the simulations it becomes evident that the OLED thin film stack properties and the light scattering structures of the substrate both influence the overall performance and thus have to be jointly optimized.

Keywords

Light outcoupling Simulation Light scattering Thin film stack Dipole orientation 

References

  1. Altazin S, Reynaud C, Mayer UM, Lanz T, Lapagna K, Knaack R, Penninck L, Kirsch C, Pernstich KP, Harkema S, Hermes D, Ruhstaller B (2015) 38.3: simulations, measurements, and optimization of OLEDs with scattering layer. SID Symp Dig Tech Pap 46(1):564–567CrossRefGoogle Scholar
  2. Baldo MA, O’brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698):151–154ADSCrossRefGoogle Scholar
  3. Bathelt R, Buchhauser D, Gärditz C, Paetzold R, Wellmann P (2007) Light extraction from OLEDs for lighting applications through light scattering. Org Electron 8(4):293–299CrossRefGoogle Scholar
  4. Chance RR, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 37(1):65Google Scholar
  5. Chen S, Kwok HS (2010) Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates. Opt Express 18(1):37ADSCrossRefGoogle Scholar
  6. Frischeisen J, Yokoyama D, Adachi C, Brütting W (2010) Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 96(7):073302ADSCrossRefGoogle Scholar
  7. Greiner H (2007) Light extraction from organic light emitting diode substrates. Simulation and experiment. Jpn J Appl Phys 46:4125–4137ADSCrossRefGoogle Scholar
  8. Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S et al (2015) Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat Commun 6:8476CrossRefGoogle Scholar
  9. Kim SY, Jeong WI, Mayr C, Park YS, Kim KH, Lee JH et al (2013) Light-emitting diodes: organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter (Adv. Funct. Mater. 31/2013). Adv Funct Mater 23(31):3829–3829CrossRefGoogle Scholar
  10. Lanz T, Ruhstaller B, Battaglia C, Ballif C (2011) Extended light scattering model incorporating coherence for thin-film silicon solar cells. J Appl Phys 110(3):033111ADSCrossRefGoogle Scholar
  11. Levell JW, Harkema S, Pendyala RK, Rensing PA, Senes, A, Bollen D, … Wilson JS (2013) Device reflectivity as a simple rule for predicting the suitability of scattering foils for improved OLED light extraction. In: SPIE organic photonics+ electronics, International Society for Optics and Photonics, pp 88291L–88291LGoogle Scholar
  12. Möller S, Forrest SR (2002) Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J Appl Phys 91(5):3324–3327ADSCrossRefGoogle Scholar
  13. Murano S, Pavicic D, Furno M, Rothe C, Canzler TW, Haldi A et al (2012) 51.2: Outcoupling enhancement mechanism investigation on highly efficient PIN OLEDs using crystallizing evaporation processed organic outcoupling layers. SID Symp Dig Tech Pap 43(1). Blackwell:687–690CrossRefGoogle Scholar
  14. Penninck L, De Visschere P, Beeckman J, Neyts K (2011) Dipole radiation within one-dimensional anisotropic microcavities: a simulation method. Opt Express 19(19):18558–18576ADSCrossRefGoogle Scholar
  15. Pfeiffer M, Leo K, Blochwitz-Niemoth J, Zhou X (2006) U.S. Patent No. 7,074,500. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  16. PHELOS angular luminescence spectrometer from Fluxim AG (2018) www.fluxim.com, Switzerland
  17. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681CrossRefGoogle Scholar
  18. Ruhstaller B, Flatz T, Moos M, Sartoris G, Kiy M, Beierlein T, Kern R, Winnewisser C, Pretot R, Chebotareva N, van der Schaaf P (2007) 59.1: Invited paper: optoelectronic OLED modeling for device optimization and analysis. SID Symp Dig Tech Pap 38(1):1686–1690. BlackwellCrossRefGoogle Scholar
  19. Schwab T, Fuchs C, Scholz R, Zakhidov A, Leo K, Gather MC (2014) Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates. Opt Express 22(7):7524–7537ADSCrossRefGoogle Scholar
  20. SETFOS simulation software by Fluxim AG (2018) www.fluxim.com, Switzerland
  21. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428):234–238ADSCrossRefGoogle Scholar
  22. Van De Hulst HC (1957) Light scattering by small particles. Courier Dover PublicationsGoogle Scholar
  23. Yokoyama D, Suzuki Y, Aita W (2015) Super-low-index hole transport layers and their applications for high outcoupling of OLEDs. IMID Digest ProceedingsGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Stéphane Altazin
    • 1
  • Lieven Penninck
    • 2
  • Beat Ruhstaller
    • 3
    Email author
  1. 1.Fluxim AGWinterthurSwitzerland
  2. 2.Fluxim AGWinterthurSwitzerland
  3. 3.School of EngineeringZurich University of Applied SciencesWinterthurSwitzerland

Section editors and affiliations

  • Takatoshi Tsujimura
    • 1
  1. 1.OLED Business UnitKonica Minolta Inc.TokyoJapan

Personalised recommendations