Advertisement

Agavaceae

  • J. ThiedeEmail author
  • U. Eggli
Reference work entry
  • 8 Downloads
Part of the Illustrated Handbook of Succulent Plants book series (SUCCPLANTS)

Abstract

A diagnostic description of the family is given with special emphasis on the occurrence of succulence. This is followed by information on the ordinal placement, a selection of important literature, and information on the geographical distribution. A short discussion of the family’s position in the angiosperm phylogeny is supplemented by a summary of its past and present classification in a phylogenetic context. The succulent features present amongst the species of the family are shortly summarized, as is its general economical importance. Finally, a dichotomous key to the genera with succulent species is given.

References

  1. Althoff, D. M. (2016) Specialization in the Yucca-Yucca Moth obligate pollination mutualism: A role for antagonism? Amer. J. Bot. 103(10): 1803–1809, map, ills.  https://doi.org/10.3732/ajb.1600053.CrossRefGoogle Scholar
  2. APG (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161(2): 105–121.  https://doi.org/10.1111/j.1095-8339.2009.00996.x.CrossRefGoogle Scholar
  3. APG (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181(1): 1–20.  https://doi.org/10.1111/boj.12385.CrossRefGoogle Scholar
  4. Archibald, J. K. [& al. 2015], Kephart, S. R., Theiss, K. E., Petrosky, A. L. & Culley, T. M. (2015) Multilocus phylogenetic inference in subfamily Chlorogaloideae and related genera of Agavaceae — Informing questions in taxonomy at multiple ranks. Molec. Phylogen. Evol. 84: 266–283, ills., map.  https://doi.org/10.1016/j.ympev.2014.12.014.CrossRefGoogle Scholar
  5. Boeuf, T. (2007) Yucca & Co. Winterharte Wüstengärten in Mitteleuropa anlegen und pflegen. Berlin (DE): Medemia.Google Scholar
  6. Boeuf, T. [& al. 2010], Heim, A. & Weissbeck, S. (2010) Faszination bunt. Die Welt der panaschierten Yuccas. Münster (DE): Natur und Tier-Verlag GmbH.Google Scholar
  7. Bogler, D. J. & Simpson, B. B. (1995) A chloroplast DNA study of the Agavaceae. Syst. Bot. 20(2): 191–205. http://www.jstor.org/stable/2419449CrossRefGoogle Scholar
  8. Bogler, D. J. & Simpson, B. B. (1996) Phylogeny of Agavaceae based on ITS rDNA sequence variation. Amer. J. Bot. 83(9): 1225–1235. http://www.jstor.org/stable/2446206CrossRefGoogle Scholar
  9. Bogler, D. J. [& al. 2006], Pires, C. & Francisco-Ortega, J. (2006) Phylogeny of Agavaceae based on ndhF, rbcL, and ITS sequences: Implications of molecular data for classification. In: Columbus, J. T. & al. (eds.): Monocots. Comparative biology and evolution excluding Poales. Aliso 22: 313–328.  https://doi.org/10.5642/aliso.20062201.26.CrossRefGoogle Scholar
  10. Bray, W. L. (1903) The tissues of some plants of the Sotol region. Bull. Torrey Bot. Club 30(11): 621–633, ills. http://biodiversitylibrary.org/page/713368
  11. Carlquist, S. (2012) Monocot xylem revisited: New information, new paradigms. Bot. Rev. (Lancaster) 78: 87–153, ills.  https://doi.org/10.1007/s12229-012-9096-1.CrossRefGoogle Scholar
  12. Cave, M. S. (1948) Sporogenesis and embryo sac development of Hesperocallis and Leucocrinum in relation to their systematic position. Amer. J. Bot. 35(6): 343–349.  https://doi.org/10.2307/2437748.CrossRefGoogle Scholar
  13. Chagoya-Méndez, V. M. (2004) Diagnóstico de la cadena productiva del sistema producto maguey-mezcal. Oaxaca (MX): Secretaría de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación SAGARPA, Delegación Oaxaca.Google Scholar
  14. Chupov, V. S. & Kutiavina, N. G. (1981) [Russian:] Serological studies in the order Liliales. Bot. Zhurn. (Moscow & Leningrad) 66: 75–81.Google Scholar
  15. Conran, J. G. (1998a) Behniaceae. In: Kubitzki, K. (ed.): The families and genera of vascular plants; 3: 146–148, ills. Berlin (DE) etc.: Springer-Verlag.  https://doi.org/10.1007/978-3-662-03533-7_18.CrossRefGoogle Scholar
  16. Conran, J. G. (1998b) Herreriaceae. In: Kubitzki, K. (ed.): The families and genera of vascular plants; 3: 253–255, ills. Berlin (DE) etc.: Springer-Verlag.  https://doi.org/10.1007/978-3-662-03533-7_33.CrossRefGoogle Scholar
  17. Conran, J. G. & Rudall, P. (1998) Anemarrhenaceae. In: Kubitzki, K. (ed.): The families and genera of vascular plants; 3: 111–114, ills. Berlin (DE) etc.: Springer-Verlag.  https://doi.org/10.1007/978-3-662-03533-7_12.CrossRefGoogle Scholar
  18. Dahlgren, R. M. T. [& al. 1985], Clifford, H. T. & Yeo, P. F. (1985) The families of the Monocotyledons. Structure, evolution, and taxonomy. Berlin, Heidelberg (DE) etc.: Springer-Verlag.  https://doi.org/10.1007/978-3-642-61663-1.CrossRefGoogle Scholar
  19. Eguiarte, L. E. (1995) Hutchinson (Agavales) vs. Huber y Dahlgren (Asparagales). Análisis moleculares sobre filogenia y evolución de la familia Agavaceae sensu Hutchinson dentro de las monocotiledóneas. Bol. Soc. Bot. México 56: 45–56.  https://doi.org/10.17129/botsci.1463.CrossRefGoogle Scholar
  20. Eguiarte, L. E. [& al. 1994], Duvall, M. R., Learn, G. H. Jr., & Clegg, M. T. (1994) The systematic status of the Agavaceae and Nolinaceae and related Asparagales in the monocotyledons: An analysis based on the rbcL gene sequence. Bol. Soc. Bot. México 54: 36–56.  https://doi.org/10.17129/botsci.1427.
  21. Fisher, J. B. (1975) Eccentric secondary growth in Cordyline and other Agavaceae (Monocotyledonae) and its correlation with auxin distribution. Amer. J. Bot. 62: 292–302.  https://doi.org/10.1002/j.1537-2197.1975.tb12356.x.CrossRefGoogle Scholar
  22. Gentry, H. S. (1982) Agaves of Continental North America. Tucson (US): University of Arizona Press.Google Scholar
  23. Gibson, A. C. (1996) Structure-function relations of warm desert plants. Berlin (DE) etc.: Springer.  https://doi.org/10.17129/botsci.1427.
  24. Givnish, T. J. [& al. 2006], Pires, J. C., Graham, S. W., McPherson, M. A., Prince, L. M., Patterson, T. B., Rai, H. S., Roalson, E. H., Evans, T. M., Hahn, W. J., Millam, K. C., Meerow, A. W., Molvray, M., Kores, P. J., O’Brien, H. E., Hall, J. C., Kress, W. J. & Sytsma, K. J. (2006) Phylogenetic relationship of Monocots based on the highly informative plastid gene ndhF: Evidence for widespread concerted convergence. In: Columbus, J. T. & al. (eds.): Monocots. Comparative biology and evolution excluding Poales. Aliso 22: 28–51.  https://doi.org/10.5642/aliso.20062201.04.
  25. Givnish, T. J. [& al. 2018], Zuluaga, A., Spalink, D., Soto Gomez, M., Lam, V. K. Y., Saarela, J. M., Sass, C., Iles, W. J. D., Lima de Sousa, D. J., Leebens-Mack, J., Pires, J. C., Zomlefer, W. B., Gandolfo, M. A., Davis, J. I., Stevenson, D. W., dePamphilis, C., Specht, C. D., Graham, S. W., Barrett, C. F. & Ané, C. (2018) Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. Amer. J. Bot. 105(11): 1–23.  https://doi.org/10.1002/ajb2.1178.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Good-Avila, S. V. [& al. 2006], Souza, V., Gaut, B. S. & Eguiarte, L. E. (2006) Timing and rate of speciation in Agave (Agavaceae). Proc. Nation. Acad. Sci. USA 103(24): 9124–9129.  https://doi.org/10.1073/pnas.0603312103.CrossRefGoogle Scholar
  27. Graham, S. W. [& al. 2006], Zgurski, J. M., McPherson, M. A., Cherniawsky, D. M., Saarela, J. M., Horne, E. F. C., Smith, S. Y., Wong, W. A., O’Brien, H. E., Biron, V. L., Pires, J. C., Olmstead, R. G., Chase, M. W. & Rai, H. S. (2006) Robust inference of Monocot deep phylogeny using an expanded multigene plastid data set. In: Columbus, J. T. & al. (eds.): Monocots. Comparative biology and evolution excluding Poales. Aliso 22: 3–21.  https://doi.org/10.5642/aliso.20062201.02.CrossRefGoogle Scholar
  28. Halpin, K. M. & Fishbein, M. (2013) A chloroplast phylogeny of Agavaceae subfamily Chlorogaloideae: Implications for the tempo of evolution on serpentine soils. Syst. Bot. 38(4): 996–1011, ills., map.  https://doi.org/10.1600/036364413X674850.CrossRefGoogle Scholar
  29. Heyduk, K. [& al. 2016], McKain, M. R., Lalani, F. & Leebens-Mack, J. (2016) Evolution of a CAM anatomy predates the origins of Crassulacean Acid Metabolism in the Agavoideae (Asparagaceae). Molec. Phylogen. Evol. 105: 102–113, ills.  https://doi.org/10.1016/j.ympev.2016.08.018.CrossRefGoogle Scholar
  30. Hodgson, W. C. (2001) Food plants of the Sonoran Desert. Tucson (US): University of Arizona Press.Google Scholar
  31. Hutchinson, J. (1934) The families of flowering plants. Vol. 2. London (GB): MacMillan.Google Scholar
  32. Irish, M. & Irish, G. (2000) Agaves, Yuccas and related plants. A gardener’s guide. Portland (US): Timber Press.Google Scholar
  33. Jacquemin, D. (2000) Les succulentes ornementales. Agavacées pour les climats méditerranéens. Beschoneria [sic!], Calibanus, Cordyline, Dasylirion, Doryanthes, Dracaena, Furcraea, Hesperaloe, Nolina, Phormium, Yucca. Marly-le-Roi (FR): Editions Champflour.Google Scholar
  34. Jacquemin, D. (2001) Les succulentes ornementales. Agavacées pour les climats méditerranéens. Agave, Manfreda, Polianthes, Prochnyanthes, Sansevieria. Marly-le-Roi (FR): Editions Champflour.Google Scholar
  35. Janssen, T. & Bremer, K. (2004) The age of major monocot groups inferred from 800+ rbcL sequences. Bot. J. Linn. Soc. 146(4): 385–398.  https://doi.org/10.1111/j.1095-8339.2004.00345.x.CrossRefGoogle Scholar
  36. Judd, W. S. [& al. 2016], Campbell, C. S., Kellogg, E. A., Stevens, P. F. & Donoghue, M. J. (2016) Plant systematics: A phylogenetic approach. Ed. 4. Sunderland (US): Sinauer Associates.Google Scholar
  37. Kim, J.-H. [& al. 2010], Kim, D.-K., Forest, F., Fay, M. F. & Chase, M. W. (2010) Molecular phylogenetics of Ruscaceae sensu lato and related families (Asparagales) based on plastid and nuclear DNA sequences. Ann. Bot. (Oxford), n.s. 106: 775–790.  https://doi.org/10.1093/aob/mcq167.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Klein, D. (2010) ×Mangave ‘Bloodspot’ und ×Mangave ‘Macho Mocha’. Kakt. and. Sukk. 61(8): 211–215, ills.Google Scholar
  39. Krause, K. (1930) Liliaceae. In: Engler, A. & Prantl, K. (eds.): Die natürlichen Pflanzenfamilien, ed. 2, 15a: 227–385, key, ills. Leipzig (DE): W. Engelmann.Google Scholar
  40. Kubitzki, K. (1998) Hostaceae. In: Kubitzki, K. (ed.): The families and genera of vascular plants; 3: 256–258, ills. Berlin (DE) etc.: Springer-Verlag.  https://doi.org/10.1007/978-3-662-03533-7_34.CrossRefGoogle Scholar
  41. Lindstrom, J. T. (2006a) Intergeneric hybrids between Polianthes and Manfreda. In: Ranney, T. G. (ed.): Plant breeding and evaluation section, SNA Research Conference 51: 599–601. http://sna.org/Resources/Documents/06resprocsec12.pdf
  42. Lindstrom, J. T. (2006b) Plant profile. Manfreda maculosa (L.) Salisb. ex Rose × Polianthes tuberosa L. Arkansas Re-Leaf Newslett. 7: 2.Google Scholar
  43. Martínez-Gutiérrez, G. A. [& al. 2013], Íñiguez-Covarrubias, G., Ortiz-Hernández, Y. D., López-Cruz, J. Y. & Bautista Cruz, M. A. (2013) Tiempos de apilado del bagazo del maguey mezcalero y su efecto en las propiedades del compost para sustrato de tomate. Revista Int. Contam. Amb. 29(3): 209–216. http://projecteuclid.redalyc.org/articulo.oa?id=37028276007
  44. Matiz, A. [& al. 2013], Mioto, P. T., Yepes Mayorga, A., Freschi, L. & Mercier, H. (2013) CAM photosynthesis in Bromeliads and Agaves: What can we learn from these plants? In: Dubinsky, Z. (ed.): Photosynthesis; pp. 91–134. Rijeka (HR): InTech.  https://doi.org/10.5772/56219/.Google Scholar
  45. Matuda, E. & Piña Luján, I. (1980) Las plantas mexicanas del género Yucca. Toluca (MX): Miscelanea Estado de México.Google Scholar
  46. McKain, M. R. [& al. 2012], Wickett, N., Zhang, Y., Ayyampalayam, S., McCombie, W. R., Chase, M. W., Pires, J. C., dePamphilis, C. W. & Leebens-Mack, J. (2012) Phylogenomic analysis of transcriptome data elucidates co-occurence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Amer. J. Bot. 99(2): 397–406, ills.  https://doi.org/10.3732/ajb.1100537.PubMedCrossRefPubMedCentralGoogle Scholar
  47. McKain, M. R. [& al. 2016], McNeal, J. R., Kellar, P. R., Eguiarte, L. E., Pires, J. C. & Leebens-Mack, J. (2016) Timing of rapid diversification and convergent origins of active pollination within Agavoideae (Asparagaceae). Amer. J. Bot. 103(10): 1717–1729.  https://doi.org/10.3732/ajb.1600198.PubMedCrossRefPubMedCentralGoogle Scholar
  48. McKelvey, S. D. & Sax, K. (1933) Taxonomic and cytological relationships of Yucca and Agave. J. Arnold Arbor. 14: 76–81. https://www.jstor.org/stable/43780651CrossRefGoogle Scholar
  49. Moore, J. (2016) Aloes & Agaves in cultivation. Solana Beach (US): Solana Succulents.Google Scholar
  50. Müller, C. (1909) Beiträge zur vergleichenden Anatomie der Blätter der Gattung Agave und ihrer Verwertung für die Unterscheidung der Arten. Bot. Zeitung (Leipzig) 67: 93–139, ills., tt. IV-V. https://biodiversitylibrary.org/page/33628820
  51. Nobel, P. S. (1988) Environmental biology of agaves and cacti. Cambridge (GB) etc.: Cambridge University Press.Google Scholar
  52. Nyffeler, R. & Eggli, U. (2010) An up-to-date familial and suprafamilial classification of succulent plants. Bradleya 28: 125–144.  https://doi.org/10.5167/uzh-35243.CrossRefGoogle Scholar
  53. Olivares, E. & Medina, E. (1990) Carbon dioxide exchange, soluble carbohydrates and acid accumulation in a fructan accumulating plant: Fourcroya humboldtiana Trel. J. Exp. Bot. 41(226): 579–586.  https://doi.org/10.1093/jxb/41.5.579.CrossRefGoogle Scholar
  54. Ondrovic, R. & Ondrovic, S. (2016) Yucca. Vorkommen, Bestimmen und Pflegen aller Arten aus Nordamerika. Remagen-Oberwinter (DE): Verlag Kessel.Google Scholar
  55. Parker, K. C. [& al. 2014], Trapnell, D. W., Hamrick, J. L. & Hodgson, W. C. (2014) Genetic and morphological contrasts between wild and anthropogenic populations of Agave parryi var. huachucensis in south-eastern Arizona. Ann. Bot. (Oxford), n.s. 113(6): 939–952, ills., map.  https://doi.org/10.1093/aob/mcu016.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Petersen, G. [& al. 2006], Seberg, O., David, J. I. & Stevenson, D. W. (2006) RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes. Taxon 55(4): 871–886.  https://doi.org/10.2307/25065682.CrossRefGoogle Scholar
  57. Pfosser, M. F. & Speta, F. (1999) Phylogenetics of Hyacinthaceae based on plastid DNA sequences. Ann. Missouri Bot. Gard. 86(4): 852–875.  https://doi.org/10.2307/2666172.CrossRefGoogle Scholar
  58. Riffell, J. A. [& al. 2008a], Alarcón, R., Abrell, L., Davidowitz, G., Bronstein, J. L. & Hildebrand, J. G. (2008) Behavioral consequences of innate preferences and olfactory learning in hawkmoth—flower interactions. Proc. Nation. Acad. Sci. USA 105(9): 3404–3409, ills.  https://doi.org/10.1073/pnas.0709811105.CrossRefGoogle Scholar
  59. Riffell, J. A. [& al. 2008b], Alarcón, R. & Abrell, L. (2008) Floral trait associations in hawkmoth-specialized and mixed pollination systems. Commun. Integr. Biol. 1(1): 6–8, ills.  https://doi.org/10.4161/cib.1.1.6350CrossRefGoogle Scholar
  60. Ritchie, W. (2014) An assessment of CBOL plant DNA barcodes in the genus Manfreda Salisb. (Asparagaceae) for utility in species identification and phylogenetic studies. Bradleya 32: 172–179, ills.  https://doi.org/10.25223/brad.n32.2014.a9.CrossRefGoogle Scholar
  61. Ritchie, W. & Lindstrom, J. T. (2014) ×Polifreda ‘Lindstrom’, a cross between False Aloe and Mexican Tuberose. J. Environm. Hort. 32(1): 51–53, ill. http://hrijournal.org/doi/full/10.24266/0738-2898.32.1.51.
  62. Robert, M. L. [& al. 2008], Lim, K. Y., Hanson, L., Sanchez-Teyer, F., Bennett, M. D., Leitch, A. R. & Leitch, I. J. (2008) Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot. J. Linn. Soc. 158(2): 215–222, ill.  https://doi.org/10.1111/j.1095-8339.2008.00831.x.CrossRefGoogle Scholar
  63. Rocha, M. [& al. 2006], Good-Ávila, S. V., Molina-Freaner, F., Arita, H. T., Castillo, A., García-Mendoza, A., Silva-Montellano, A., Gaut, B. S., Souza, V. & Eguiarte, L. E. (2006) Pollination biology and adaptive radiation of Agavaceae, with special emphasis on the genus Agave. In: Columbus, J. T. & al. (eds.): Monocots. Comparative biology and evolution excluding Poales. Aliso 22: 329–344, maps.  https://doi.org/10.5642/aliso.20062201.27.CrossRefGoogle Scholar
  64. Rowley, G. D. (1987) Caudiciform and pachycaul succulents. Pachycauls, bottle-, barrel- and elephant-trees and their kin: A collector’s miscellany. Mill Valley (US): Strawberry Press.Google Scholar
  65. Sayed, O. H. (2001) Crassulacean Acid Metabolism 1975-2000, a check list. Photosynthetica 39(3): 339–352.  https://doi.org/10.1023/A:1020292623960.CrossRefGoogle Scholar
  66. Schulze, W. (1984) Beiträge zur Taxonomie der Liliifloren: XII. Der Umfang der Agavaceae. Wiss. Z. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe 32(6): 965–979, ills., maps.Google Scholar
  67. Seberg, O. [& al. 2012], Petersen, G., Davis, J. I., Pires, J. C., Stevenson, D. W., Chase, M. W., Fay, M. F., Devey, D. S., Jørgensen, T., Sytsma, K. J. & Pillon, Y. (2012) Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. Amer. J. Bot. 99(5): 875–889, ills.  https://doi.org/10.3732/ajb.1100468.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sidana, J. [& al. 2016], Singh, B. & Sharma, O. P. (2016) Saponins of Agave: Chemistry and bioactivity. Phytochemistry 130: 22–46.  https://doi.org/10.1016/j.phytochem.2016.06.010.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Silva-Montellano, A. & Eguiarte, L. E. (2003a) Geographic patterns in the reproductive ecology of Agave lechuguilla (Agavaceae) in the Chihuahuan Desert. I. Floral characteristics, visitors, and fecundity. Amer. J. Bot. 90(3): 377–387, map, ill., diags.  https://doi.org/10.3732/ajb.90.3.377.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Simmons-Boyce, J. L. & Tinto, W. F. (2007) Steroidal saponins and sapogenins from the Agavaceae family. Nat. Prod. Commun. 2(1): 99–114.Google Scholar
  71. Smith, C. I. [& al. 2008], Pellmyr, O., Althoff, D. M., Balcázar-Lara, M., Leebens-Mack, J. & Segraves, K. A. (2008) Pattern and timing of diversification in Yucca (Agavaceae): Specialized pollination does not escalate rates of diversification. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 275: 249–258.  https://doi.org/10.1098/rspb.2007.1405.CrossRefGoogle Scholar
  72. Speta, F. (1998) Hyacinthaceae. In: Kubitzki, K. (ed.): The families and genera of vascular plants; 3: 261–285, ills., key. Berlin (DE) etc.: Springer Verlag.  https://doi.org/10.1007/978-3-662-03533-7_35.CrossRefGoogle Scholar
  73. Starr, G. (2012) Agaves. Living sculptures for landscapes and containers. Portland (US)/London (GB): Timber Press.Google Scholar
  74. Steele, P. R. [& al. 2012], Hertweck, K. L., Mayfield, D., McKain, M. R., Leebens-Mack, H. & Pires, J. C. (2012) Quality and quantity of data recovered from massively parallel sequencing: Examples in Asparagales and Poaceae. Amer. J. Bot. 99(2): 330–348.  https://doi.org/10.3732/ajb.1100491.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Stevenson, D. W. (1980) Radial growth in Beaucarnea recurvata. Amer. J. Bot. 67(4): 476–489. http://www.jstor.org/stable/2442287CrossRefGoogle Scholar
  76. Svensson, G. P. [& al. 2011], Pellmyr, O. & Raguso, R. A. (2011) Pollinator attraction to volatiles from virgin and pollinated host flowers in a Yucca / moth obligate mutualism. Oikos 120(10): 1577–1583.  https://doi.org/10.1111/j.1600-0706.2011.19258.x.CrossRefGoogle Scholar
  77. Tamura, M. N. (1995) A karyological review of the orders Asparagales and Liliales (Monocotyledoneae). Feddes Repert. 106(1–2): 83–111.  https://doi.org/10.1002/fedr.19951060118.CrossRefGoogle Scholar
  78. Verhoek-Williams, S. (1998) Agavaceae. In: Kubitzki, K. (ed.): The families and genera of vascular plants; 3: 60–70, ills., key. Berlin (DE) etc.: Springer-Verlag.  https://doi.org/10.1007/978-3-662-03533-7_8.CrossRefGoogle Scholar
  79. Verhoek-Williams, S. & Hess, W. J. (2002) Agavaceae. In: Flora of North America north of Mexico; 26: 413–465, ills., keys. New York (US: NY)/Oxford (GB): Oxford University Press.Google Scholar
  80. Wikström, N. [& al. 2001], Savolainen, V. & Chase, M. W. (2001) Evolution of the Angiosperms: Calibrating the family tree. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 268: 2211–2220.  https://doi.org/10.1098/rspb.2001.1782.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Winter, K. & Smith, J. A. C. (eds.) (1996) Crassulacean Acid Metabolism. Biochemistry, ecophysiology and evolution. Berlin (DE) etc.: Springer.  https://doi.org/10.1007/978-3-642-79060-7.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.HamburgGermany
  2. 2.Sukkulenten-Sammlung ZürichGrün Stadt ZürichZürichSwitzerland

Personalised recommendations