Nanocrystalline Silicon and Solar Cells

  • Deyuan WeiEmail author
  • Shuyan Xu
  • Igor Levchenko
Reference work entry


Thin-film solar cell technology based on nanocrystalline silicon has made a significant progress since the production of the first hydrogenated nanocrystalline silicon (nc-Si:H) solar cell in 1994. Up to date, the highest conversion efficiency of single-junction nc-Si:H thin-film solar cells has reached 11.8%, and further progress is expected. In this chapter, we aim to outline the progress, trends, and major approaches to enhance the nanocrystalline silicon solar cell technology and achieve considerably higher efficiency numbers. Comprising of two parts, this chapter in its first part describes the fundamentals of nanocrystalline silicon properties, typical fabrication methods, and technologies for solar cells as well as recent progress in nc-Si:H fabrications and properties. The second part states the recent advanced technologies for efficiency improvement and provides an overview of the significant achievements, current status, and future prospects of the thin-film solar cells based on nc-Si:H. In particular, the highest reported open-circuit voltage of 608 mV has been demonstrated in a 650-nm-thick single-junction nc-Si:H solar cell by applying amorphous silicon passivation layers at the n/i interface. Besides, the multijunction solar cell technique has significantly contributed to the improvement of the conversion efficiency. In particular, the best triple-junction tandem solar cells reach an initial active-area efficiency of about 16% in the a-Si:H/a-SiGe:H/nc-Si:H structure. Such an impressive success in light management paves the way to the application of nanocrystalline silicon for many vital fields such as novel texture structures, window layers, intermediate reflectors for the improvements of photocurrent density, and conversion efficiency.


Nanocrystalline silicon Microcrystalline silicon Solar cells Thin-film solar cells Fabrication Light management 


  1. J. Bailat, E. Vallat-Sauvain, L. Feitknecht, C. Droz, A. Shah, J. Non-Cryst. Solids 299–302, 1219 (2002)CrossRefGoogle Scholar
  2. M. Boccard, M. Despeisse, J. Escarre, X. Niquille, G. Bugnon, S. Hanni, M. Bonnet-Eymard, F. Meillaud, C. Ballif, IEEE J. Photovoltaics 4, 1368 (2014)CrossRefGoogle Scholar
  3. P. Buehlmann, J. Bailat, D. Domine, A. Billet, F. Meillaud, A. Feltrin, C. Ballif, Appl. Phys. Lett. 91, 143505 (2007)CrossRefGoogle Scholar
  4. P. Chen, P. Chen, M. Hsiao, C. Hsu, C. Tsai, Int. J. Photoenergy 2016, 8172518 (2016)Google Scholar
  5. T. Chen, F. Köhler, A. Heidt, R. Carius, F. Finger, Jpn. J. Appl. Phys. 53, 05FM04 (2014)CrossRefGoogle Scholar
  6. A. Chowdhury, S. Mukhopadhyay, S. Ray, Sol. Energy Mater. Sol. Cells 93, 597 (2009)CrossRefGoogle Scholar
  7. R. Gordon, J. Proscia, F.B. Ellis, A.E. Delahoy, Solar Energy Mater. 18, 263 (1989)CrossRefGoogle Scholar
  8. L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, Jpn. J. Appl. Phys. 37, L1116 (1998)CrossRefGoogle Scholar
  9. S. Hanni, M. Boccard, G. Bugnon, M. Despeisse, J.W. Schuttauf, F.J. Haug, F. Meillaud, C. Ballif, Phys. Status Solidi Appl. Mater. Sci. 212, 840 (2015)CrossRefGoogle Scholar
  10. M. Heintze, R. Zedlitz, J. Non-Cryst. Solids 198–200, 1038 (1996)CrossRefGoogle Scholar
  11. A. Hongsingthong, T. Krajangsang, A. Limmanee, K. Sriprapha, J. Sritharathikhun, M. Konagai, Thin Solid Films 537, 291 (2013)CrossRefGoogle Scholar
  12. C.H. Hsu, Y.S. Lin, Y.S. Cho, S.Y. Lien, P. Han, D.S. Wuu, IEEE J. Quantum Electron. 50, 515 (2014)CrossRefGoogle Scholar
  13. O. Isabella, A.H.M. Smets, M. Zeman, Sol. Energy Mater. Sol. Cells 129, 82 (2014)CrossRefGoogle Scholar
  14. S.J. Jones, R. Crucet, M. Izu, in 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, 2000, pp. 134–137Google Scholar
  15. T. Kamei, T. Wada, J. Appl. Phys. 96, 2087 (2004)CrossRefGoogle Scholar
  16. T. Kilper, W. Beyer, G. Bräuer, T. Bronger, R. Carius, M.N. van den Donker, D. Hrunski, A. Lambertz, T. Merdzhanova, A. Mück, B. Rech, W. Reetz, R. Schmitz, U. Zastrow, A. Gordijn, J. Appl. Phys. 105, 074509 (2009)CrossRefGoogle Scholar
  17. D.Y. Kim, E. Guijt, F.T. Si, R. Santbergen, J. Holovský, O. Isabella, R.A.C.M.M. van Swaaij, M. Zeman, Sol. Energy Mater. Sol. Cells 141, 148 (2015)CrossRefGoogle Scholar
  18. S. Kirner, S. Neubert, C. Schultz, O. Gabriel, B. Stannowski, B. Rech, R. Schlatmann, Jpn. J. Appl. Phys. 54, 08KB03 (2015)CrossRefGoogle Scholar
  19. S. Klein, F. Finger, R. Carius, M. Stutzmann, J. Appl. Phys. 98, 024905 (2005)CrossRefGoogle Scholar
  20. M. Konagai, Jpn. J. Appl. Phys. 50, 30001 (2011)CrossRefGoogle Scholar
  21. N. Kosku, S. Miyazaki, Thin Solid Films 511–512, 265 (2006)CrossRefGoogle Scholar
  22. J. Ma, J. Ni, J. Zhang, Z. Huang, G. Hou, X. Chen, X. Zhang, X. Geng, Y. Zhao, Sol. Energy Mater. Sol. Cells 114, 9 (2013)CrossRefGoogle Scholar
  23. Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, F. Finger, Appl. Phys. Lett. 87, 073503 (2005)CrossRefGoogle Scholar
  24. T. Matsui, M. Kondo, A. Matsuda, in 3rd World Conference on Photovoltaic Energy Conversion, Osaku, 2003, pp. 1548–1551Google Scholar
  25. J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, A. Shah, in Proceedings of the 1st IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 1994, pp. 409–412Google Scholar
  26. F. Meillaud, A. Feltrin, D. Dominé, P. Buehlmann, M. Python, G. Bugnon, A. Billet, G. Parascandolo, J. Bailat, S. Fay, N. Wyrsch, C. Ballif, A. Shah, Philos. Mag. 89, 2599 (2009)CrossRefGoogle Scholar
  27. J. Merten, J.M. Asensi, C. Voz, A. Shah, R. Platz, J. Andreu, IEEE Trans. Electron Devices 45, 423 (1998)CrossRefGoogle Scholar
  28. B.Y. Moon, J.H. Youn, S.H. Won, J. Jang, Sol. Energy Mater. Sol. Cells 69, 139 (2001)CrossRefGoogle Scholar
  29. E. Moulin, M. Steltenpool, M. Boccard, G. Bugnon, M. Stuckelberger, E. Feuser, B. Niesen, R. Van Erven, J. Sch, F. Haug, C. Ballif, IEEE J. Photovoltaics 4, 1177 (2014)CrossRefGoogle Scholar
  30. J. Müller, B. Recha, J. Springer, M. Vanecek, Sol. Energy 77, 917 (2004)CrossRefGoogle Scholar
  31. S.Y. Myong, K. Sriprapha, S. Miyajima, A. Yamad, M. Konagai, Appl. Phys. Lett. 90, 263509 (2007)CrossRefGoogle Scholar
  32. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Science 352, aad4424 (2016)CrossRefGoogle Scholar
  33. M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, Sol. Energy Mater. Sol. Cells 93, 1714 (2009)CrossRefGoogle Scholar
  34. J.K. Rath, Sol. Energy Mater. Sol. Cells 76, 431 (2003)CrossRefGoogle Scholar
  35. H. Sai, K. Saito, M. Kondo, Appl. Phys. Lett. 101, 1 (2012)Google Scholar
  36. H. Sai, K. Maejima, T. Matsui, T. Koida, M. Kondo, S. Nakao, Y. Takeuchi, H. Katayama, I. Yoshida, Jpn. J. Appl. Phys. 54, 08KB05 (2015)CrossRefGoogle Scholar
  37. H. Sai, T. Matsui, K. Matsubara, Appl. Phys. Lett. 109, 1 (2016)Google Scholar
  38. S. Schicho, F. Köhler, R. Carius, A. Gordijn, Sol. Energy Mater. Sol. Cells 98, 391 (2012)CrossRefGoogle Scholar
  39. R.E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Solar Cells: Modeling, Materials, and Device Technology, 1st edn. (Springer, New York, 1998)Google Scholar
  40. C.S. Schuster, Diffractive Optics for Thin-Film Silicon Solar Cells, 1st edn. (Springer, Cham, 2017)CrossRefGoogle Scholar
  41. A. Tamang, H. Sai, V. Jovanov, S.I.H. Bali, K. Matsubara, D. Knipp, Sol. Energy Mater. Sol. Cells 151, 81 (2016)CrossRefGoogle Scholar
  42. H. Tan, P. Babal, M. Zeman, A.H.M. Smets, Sol. Energy Mater. Sol. Cells 132, 597 (2015)CrossRefGoogle Scholar
  43. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  44. M.N. Van Den Donker, S. Klein, B. Rech, F. Finger, W.M.M. Kessels, M.C.M. Van De Sanden, Appl. Phys. Lett. 90, 183504 (2007)CrossRefGoogle Scholar
  45. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, Sol. Energy Mater. Sol. Cells 62, 97 (2000)CrossRefGoogle Scholar
  46. D.Y. Wei, Ph.D. thesis, Nanyang Technological University, 2014Google Scholar
  47. D.Y. Wei, S.Q. Xiao, S.Y. Huang, C.S. Chan, H.P. Zhou, L.X. Xu, Y.N. Guo, J.W. Chai, S.J. Wang, S. Xu, J. Phys. D. Appl. Phys. 46, 215501 (2013)CrossRefGoogle Scholar
  48. S. Xu, K.N. Ostrikov, Y. Li, E.L. Tsakadze, I.R. Jones, Phys. Plasmas 8, 2549 (2001)CrossRefGoogle Scholar
  49. E. Yablanovitch, G.G. Cody, IEEE Trans. Elec. Dev. ED-29, 300 (1982)CrossRefGoogle Scholar
  50. B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, C.S. Jiang, Appl. Phys. Lett. 99, 113512 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Plasma Sources and Application Center, NIENanyang Technological UniversitySingaporeRepublic of Singapore
  2. 2.Micromachines Lab 1, School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeRepublic of Singapore
  3. 3.School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia

Section editors and affiliations

  • Jun Xu
    • 1
  1. 1.School of Electronic Science and EngineeringNanjing UniversityNanjingChina

Personalised recommendations