Advertisement

Growth of Crystalline Silicon for Solar Cells: Mono-Like Method

  • Kentaro KutsukakeEmail author
Reference work entry

Abstract

The mono-like method, also known as the mono cast, seed cast, and quasi-mono methods, is a candidate next-generation method of casting Si ingots for solar cell applications, replacing conventional casting methods. The mono-like method provides single crystalline Si ingots with the use of almost the same facilities as those used for growth of multicrystalline Si ingots. Hence, the mono-like method has potential to achieve Si ingots with both high quality and low cost. However, the mono-like method faces challenges owing to its crystal growth processes, such as multicrystallization, dislocation generation, and impurity contamination. To address these problems, advanced mono-like methods have been developed. In this chapter, advanced mono-like methods are reviewed from the viewpoint of crystal growth and the fundamentals of the mono-like method.

Keywords

Silicon Crystal growth Mono-like Seed growth Seed cast Quasi-mono Dislocations Dislocation generation Grain boundaries Defect engineering Artificial grain boundaries Functional defects 

Notes

Acknowledgment

The author is very grateful to Professor Kazuo Nakajima from Tohoku University for fruitful discussions about the fundamentals of crystal growth and defects generation of mono-like Si.

References

  1. M. Mrcarica, Photo-Dermatology 19, 28 (2013)Google Scholar
  2. F. Jay, D. Muñoz, T. Desrues, E. Pihan, V. Amaral de Oliveira, N. Enjalbert, A. Jouini, Solar Energ. Mater. Solar Cells 130, 690 (2014)CrossRefGoogle Scholar
  3. A. Jouini, in Abstract of the 10th International Workshop on Crystalline Silicon for Solar Cells (CSSC-10) (2018), p. 9Google Scholar
  4. N. Stoddard, B. Wu, L. Witting, M. Wagener, Y. Park, G. Rozgonyi, R. Clark, Solid State Phenom. 1, 131–133 (2008)Google Scholar
  5. T.F. Ciszek, G.H. Schwuttke, K.H. Yang, J. Cryst. Growth 46, 527 (1979)CrossRefGoogle Scholar
  6. K.E. Ekstrøm, G. Stokkan, R. Søndenå, H. Dalaker, T. Lehmann, L. Arnberg, M. Di Sabation, Phys. Status Solidi A 212, 2278 (2015)CrossRefGoogle Scholar
  7. Y.C. Wu, A. Lan, C.F. Yang, C.W. Hsu, C.M. Lu, A. Yang, C.W. Lan, Cryst. Growth Des. 16, 6641 (2016)CrossRefGoogle Scholar
  8. M. Trempa, C. Reimann, J. Friedrich, G. Mueller, A. Krause, L. Sylla, T. Richter, J. Cryst. Growth 405, 131 (2014)CrossRefGoogle Scholar
  9. I. Takahashi, N. Usami, K. Kutsukake, G. Stokkan, K. Morishita, K. Nakajima, J. Cryst. Growth 312, 897 (2010)CrossRefGoogle Scholar
  10. K. Jiptner, Y. Miyamura, H. Harada, B. Gao, K. Kakimoto, T. Sekiguchi, Prog. Photovolt. Res. Appl. 24, 1513 (2016)CrossRefGoogle Scholar
  11. K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, Appl. Phys. Express 6, 025505 (2013)CrossRefGoogle Scholar
  12. A.L. Endrös, Sol. Energ. Mater. Sol. Cells 72, 109 (2002)CrossRefGoogle Scholar
  13. M. Kitamura, N. Usami, T. Sugawara, K. Kutsukake, K. Fujiwara, Y. Nose, T. Shishido, K. Nakajima, J. Cryst. Growth 280, 419 (2005)CrossRefGoogle Scholar
  14. K. Kutsukake, N. Usami, K. Fujiwara, Y. Nose, K. Nakajima, J. Appl. Phys. 101, 063509 (2007a)CrossRefGoogle Scholar
  15. K. Kutsukake, N. Usami, K. Fujiwara, Y. Nose, T. Sugawara, T. Shishido, K. Nakajima, Mater. Trans. 481, 143 (2007b)CrossRefGoogle Scholar
  16. T. Hoshikawa, T. Taishi, X. Huang, S. Uda, M. Yamatani, K. Shirasawa, K. Hoshikawa, J. Cryst. Growth 307, 466 (2007)CrossRefGoogle Scholar
  17. K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, IEEE J. Photovolt. 4, 84 (2014)CrossRefGoogle Scholar
  18. I. Takahashi, S. Joonwichien, T. Iwata, N. Usami, Appl. Phys. Express 8, 105501 (2015)CrossRefGoogle Scholar
  19. D. Hu, S. Yuan, L. He, H. Chen, Y. Wan, X. Yu, D. Yang, Solar Energ. Mater Solar Cells 140, 121 (2015)CrossRefGoogle Scholar
  20. C.Y. Lan, Y.C. Wu, A. Lan, C.F. Yang, C. Hsu, C.M. Lu, A. Yang, C.W. Lan, J. Cryst. Growth 475, 136 (2017)CrossRefGoogle Scholar
  21. X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang, Solar Energ. Mater. Solar Cells 101, 95 (2012)CrossRefGoogle Scholar
  22. F. Zhang, X. Yu, S. Yuan, L. He, H. Chen, R. Hu, and D. Yang, in Abstract of the 10th International Workshop on Crystalline Silicon for Solar Cells (CSSC-10) (2018), p. 19Google Scholar
  23. B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto, J. Cryst. Growth 352, 47 (2012)CrossRefGoogle Scholar
  24. Y. Miyamura, H. Harada, K. Jiptner, J. Chen, R.R. Prakash, S. Nakano, B. Gao, K. Kakimoto, T. Sekiguchi, J. Cryst. Growth 401, 133 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Advanced Intelligence Project, RIKENTokyoJapan

Section editors and affiliations

  • Kazuo Nakajima
    • 1
  1. 1.Tohoku UniversitySendaiJapan

Personalised recommendations