Advertisement

Characterization of Wafers and Supply Materials

  • Hans Joachim MöllerEmail author
Reference work entry

Abstract

The technological development of silicon wafer processing for solar cells by multiwire sawing is mainly driven by the need to reduce cost but under the condition to maintain or even improve the wafer quality. This additional requirement becomes even more important because wafer and wire thickness will decrease in the future and the standard loose abrasive sawing technique will be replaced by the fixed abrasive sawing technique.

The essential quality parameters for wafers are total thickness variations (TTV), roughness and grooves, subsurface damage, and fracture strength stability. These factors depend on the properties of wires, consumables, and machine sawing parameters. Their investigation and determination require adequate characterization methods. The chapter describes standard and new methods, which have been developed to characterize wafers, wires, and consumables. Today’s optimization processes also require a basic understanding of the interaction processes between wires, sawing fluid, and the silicon material. Special experimental methods, which have been developed to investigate the fundamental micromechanical processes and their ramifications on the wafer quality parameters, are presented.

Keywords

Silicon wafer Subsurface damage Roughness Thickness variation Fracture strength Contamination Particle indentation Scratching Slurry Diamond wire Structured wire 

References

  1. O. Anspach, B. Hurka, K. Sunder, Solar Energy Materials and Solar Cells 131, 58 (2014)CrossRefGoogle Scholar
  2. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64–9, 533 (1981)CrossRefGoogle Scholar
  3. A. Bidiville, K. Wasmer, R. Kraft, C. Ballif, Proceedings of 24th EU PVSEC (WIP, München, 2009), p. 1400Google Scholar
  4. A. Bidiville, K. Wasmer, J. Michler, P.M. Nasch, M. Van der Meer, C. Ballif, Prog. Photovolt. Res. Appl. 18, 563 (2010)CrossRefGoogle Scholar
  5. J.I. Bye, L. Norheim, B. Holme, Ø. Nielsen, S. Steinsvik, S.A. Jensen, G. Fragiacomo, I. Lombardi, Proceedings of 26th EU PVSEC (WIP, München, 2011), p. 956Google Scholar
  6. R. Chauhan, Y. Ahn, S. Chandrasekar, T. Farris, Wear 166, 246 (1993)CrossRefGoogle Scholar
  7. C.P. Chen, M. Leipold, J. Am. Ceram. Soc. 59, 342 (1980)Google Scholar
  8. L.M. Cook, J. Non-Cryst. Solids 120, 152 (1990)CrossRefGoogle Scholar
  9. V. Domnich, Y. Gogotsi, Rev. Adv. Mater. Sci. 3, 1 (2002)CrossRefGoogle Scholar
  10. A.G. Evans, D.B. Marshall, Fund. of Friction and Wear (ASM, Metals Park, 1981), p. 441Google Scholar
  11. C. Funke, E. Kullig, M. Kuna, H.J. Möller, Adv. Eng. Mater. 6, 594 (2004)CrossRefGoogle Scholar
  12. R. Gassilloud, C. Ballif, P. Gasser, G. Buerki, J. Michler, Phys. Status Solidi (a) 202(15), 2858 (2005)CrossRefGoogle Scholar
  13. H.D. Geiler, H. Karge, M. Wagner, St. Eichler, M. Jurisch, U. Kretzer, M. Scheffer-Czygan, Mater. Sci. Semicond. Process. 9, 345 (2006)CrossRefGoogle Scholar
  14. Y. Gogotsi, C. Baek, F. Kirscht, Semicond. Sci. Technol. 14, 936 (1999)CrossRefGoogle Scholar
  15. M. Hamblin, G. Stachowiak, Wear 190, 237 (1995)CrossRefGoogle Scholar
  16. A. Holt, A. Thøgersen, C. Rohr, J.-I. Bye, G. Helgesen, Ø. Nordseth, S.A. Jensen, L. Norheim, Ø. Nielsen, Proceedings of 25th EU PVSEC (WIP, München, 2010), p. 1617Google Scholar
  17. ITRP, International Technology Roadmap for Photovoltaic, SEMI Europe Photovoltaics Group, (2016), http://itrpv.net
  18. J. Jang, M.J. Lance, S. Wen, Acta Mater. 53, 1759 (2005)CrossRefGoogle Scholar
  19. B. Lawn, Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  20. H. Li, R. Bradt, J. Mater. Sci. 31, 1065 (1996)CrossRefGoogle Scholar
  21. T. Li, P. Ge, W. Bi, Y. Gao, Mat. Sci. in Semi. Processing 66, 53 (2016)Google Scholar
  22. D. Meißner, St. Schönfelder, B. Hurka, J. Zeh, K. Sunder, R. Köpge, T. Wagner, A. Grün, H. Hagel, H.J. Möller, H. Schwabe, O. Anspach, Sol. Energy Mater. Sol. Cells 120, 346 (2014)CrossRefGoogle Scholar
  23. H. J. Möller, in Crystal Growth Technology, ed. by H. J. Scheel and P. Capper (Wiley - VCH Weinheim, 2008) p. 457Google Scholar
  24. H. J. Möller, Handbook of Crystal Growth, vol. 2, 2nd edn.(Elsevier, 2014). Chapter 18Google Scholar
  25. H. J. Möller, C. Funke, in Freiberger Forschungshefte B, ed. by H.J. Möller, G. Roewer (TU Bergakademie Freiberg, Freiberg, 2003), p. 230Google Scholar
  26. H.J. Möller, S. Würzner, R. Buchwald, M. Herms, M. Wagner, Solid State Phenom. 242, 466 (2016)CrossRefGoogle Scholar
  27. T. Orellana Pérez, C. Schmid, S. Riepe, H.J. Möller, S. Reber, Proceedings of 24th European PVSEC (WIP, München, 2009), p. 1228Google Scholar
  28. T. Orellana Pérez, E. M. Tejado, C. Funke, S. Riepe, J. Y. Pastor, H. J. Möller, J. Mat. Science (2014).  https://doi.org/10.1007/s10853-014-8192-5CrossRefGoogle Scholar
  29. C. Poon, B. Bushan, Wear 190(76) (1995)CrossRefGoogle Scholar
  30. L.S. Ramsdell, Am. Mineral. 32, 64 (1945)Google Scholar
  31. M. Verspui, G. de With, P. van der Varst, M. Buijs, Wear 188, 102 (1995)CrossRefGoogle Scholar
  32. T. Wagner, T. Behm, R. Rietzschel, S. Kaminski, C. Funke, H.J. Möller, Proceedings of 25th EU PVSEC (WIP, München, 2010), p. 1267Google Scholar
  33. S. Würzner, R. Buchwald, S. Retsch, H.J. Möller, Proceedings of 29th EU PVSEC (WIP, München, 2014a), p. 742Google Scholar
  34. S. Würzner, R. Buchwald, H.J. Möller, Phys. Status Solidi C 12–8, 1119 (2014b)Google Scholar
  35. S. Würzner, A. Falke, R. Buchwald, H.J. Möller, Energy Procedia 77, 881 (2015)CrossRefGoogle Scholar
  36. S. Würzner, M. Herms, T. Kaden, H. J. Möller, M. Wagner, Energies 10, 414 (2017)CrossRefGoogle Scholar
  37. J. Yan, T. Asami, T. Kuriyagawa, Precis. Eng. 32, 186 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fraunhofer Technology Center for Semiconductor MaterialsFreibergGermany

Section editors and affiliations

  • Hans Joachim Möller
    • 1
  1. 1.Fraunhofer Institute for Semiconductor TechnologyFraunhofer Institute for Solar Energy SystemsFreibergGermany

Personalised recommendations