Wafer Processing

  • Hans Joachim MöllerEmail author
Reference work entry


The fabrication of silicon wafers for solar cells and modules is an expensive step in the processing chain. The technological development is therefore primarily driven by the need to reduce cost. The dominant wafering method is multi-wire sawing with a straight steel wire and an abrasive slurry consisting of polyethylene glycols (PEG) and SiC powders (loose abrasive sawing). Substantial cost reductions are possible with structured steel wires or wires coated with diamond particles (fixed abrasive sawing) and the replacement of PEG by water-based fluids. Apart from the cost, the wafer qualities such as thickness variations, roughness, subsurface saw damage, and fracture stability play an important role and have to be improved as well. These factors depend on many sawing parameters, which makes optimization a difficult task. The chapter describes the requirements on the sawing machines, the wires, the slurries, the wafer quality, and the experimental methods, which have been developed to characterize wafers and the consumables. The fundamental micromechanical sawing processes and models are also described. Their knowledge is helpful to improve the sawing process in a controlled way. Alternative wafering methods and their perspectives are presented briefly.


Silicon wafer Wafering Multi-wire sawing Loose abrasive sawing Fixed abrasive sawing Slurry Diamond wire Structured wire Cleavage technology Silicon recycling Slurry recycling 


  1. T. Behm, W. Fütterer, C. Funke, S. Kaminski, H.J. Möller, R. Rietzschel, T. Wagner, Photovolt. Int. 11, 38 (2011)Google Scholar
  2. R.B. Bergmann, C. Berge, T.J. Rinke, J. Schmidt, J.H. Werner, Sol. Energ. Mat. Sol. C. 74, 213 (2002)CrossRefGoogle Scholar
  3. M. Bhagavat, V. Prasad, I. Kao, J. Tribol. 122, 394 (2000)CrossRefGoogle Scholar
  4. A. Bidiville, K. Wasmer, J. Michler, P.M. Nasch, M. Van der Meer, C. Ballif, Prog. Photovolt. Res. Appl. 18, 563 (2010)CrossRefGoogle Scholar
  5. A. Brailove, S. Kang, A. Fujisaka, F. Henley, In Proc. 25th EU PVSEC (WIP, München, 2010), p. 1613Google Scholar
  6. R. Buchwald, K. Fröhlich, S. Würzner, T. Lehmann, K. Sunder, H.J. Möller, Energy Procedia 38, 901 (2013)CrossRefGoogle Scholar
  7. R. Buchwald, S. Würzner, K. Fröhlich, M.Fuchs, S. Retsch, T. Lehmann, H. J. Möller, In Proc. 40th IEEE Conf. (IEEE, Denver, 2014), p. 654Google Scholar
  8. M. Buijs, K. Korpel van Houten, Wear 162, 954 (1993)CrossRefGoogle Scholar
  9. J. I. Bye, L. Norheim, B. Holme, Ø. Nielsen, S. Steinsvik, S. A. Jensen, G. Fragiacomo, I. Lombardi, In Proc. 26th EU PVSEC (WIP, München, 2011), p. 956Google Scholar
  10. T. F. Ciszek, In Crystals 5 (Springer, Berlin, 1981), p. 183Google Scholar
  11. V. Depauw, I. Gordon, G. Beaucarne, J. Poortmans, R. Mertens, J.-P. Celis, J. Appl. Phys. 106, 033516 (2009)CrossRefGoogle Scholar
  12. V. Depauw, Y. Qiu, K. Van Nieuwenhuysen, I. Gordon, J. Poortmans, J. Prog, Photovolt. Res. Appl. 18, 102 (2010)Google Scholar
  13. F. Dross, Appl. Phys. A-Mater 89, 149 (2007)CrossRefGoogle Scholar
  14. Y. Gogots, C. Baek, F. Kirscht, Semicond. Sci. Technol. 14, 936 (1999)CrossRefGoogle Scholar
  15. F. Henley, In Proc. 35th IEEE PVSC (IEEE, Denver, 2010), p. 387Google Scholar
  16. F. Henley, A. Brailove, A. Lamm, T. Heerwagen, E. Sauar, M. Nese, R. Steeman, B. Hammel, In Proc. 23rd EU PVSEC (WIP, München, 2008), p. 2017Google Scholar
  17. H.P. Hsu, W.P. Huang, C.F. Yang, C.W. Lan, Sep. Purif. Technol. 133, 1 (2014)CrossRefGoogle Scholar
  18. ITRPV, 7th International Technology Roadmap for Photovoltaic (VDMA, Frankfurt, 2016)Google Scholar
  19. L. Johnsen, K. Gastinger, L. Bjerkan, R. Rietzschel, H.J. Möller, Proc. 24th Europ. PVSEC (WIP, München, 2009), p. 1248Google Scholar
  20. S. Kaminski, R. Rietzschel, T. Wagner, C. Funke, H.J. Möller, Proc. 24th Europ. PVSEC (WIP, München, 2009), p. 1299Google Scholar
  21. S. Kaminski, T. Wagner, R. Rietzschel, W. Fütterer, C. Funke, H.J. Möller, Proc. 25th Europ. PVSEC (WIP, München, 2010), p. 1315Google Scholar
  22. H. Lange, I. Schwirtlich, J. Crystal Growth 104, 108 (1990)CrossRefGoogle Scholar
  23. J. Larsen-Basse, Wear 166, 93 (1993)CrossRefGoogle Scholar
  24. Y.C. Lin, C.Y. Tai, Sep. Purif. Technol. 74, 170 (2010)CrossRefGoogle Scholar
  25. Y.C. Lin, T.Y. Wang, C.W. Lan, C.Y. Tai, Powder Technol. 200, 216 (2010)CrossRefGoogle Scholar
  26. S. Liu, K. Huang, H. Zhu, Sep. Purif. Technol. 118, 448 (2013)CrossRefGoogle Scholar
  27. T. Liu, P. Ge, W. Bi, Y. Gao, Mater. Sci. Semi. Proc. (2016.) in pressGoogle Scholar
  28. D. Meißner, B. Hurka, R. Rietzschel, H.J. Möller, O. Anspach, Proc. 27th EU PVSEC (WIP, München, 2012), p. 1076Google Scholar
  29. D. Meißner, St. Schönfelder, B. Hurka, J. Zeh, K. Sunder, R. Köpge, Th. Wagner, A. Grün, H. Hagel, H.J. Möller, H. Schwabe, O. Anspach, Sol. Energy Mater. Sol. Cells 120, 346 (2014)CrossRefGoogle Scholar
  30. H.J. Möller, Adv. Eng. Mater. 6, 501 (2004)CrossRefGoogle Scholar
  31. H.J. Möller, Phys. Stat. Sol. (a) 657, 203–204 (2006)Google Scholar
  32. H. J. Möller, Crystal sawing technology, in Crystal Growth Technology, ed. by H. J. Scheel, P. Capper (Wiley, VCH Weinheim, 2008), p. 457Google Scholar
  33. H.J. Möller, Wafer Processing in Handbook of Crystal Growth, vol 2, 2nd edn. (Elsevier, 2014.) chapter 18Google Scholar
  34. H.J. Möller, S. Retsch, R. Rietzschel, Proc. 28th EU PVSEC (WIP, München, 2013), p. 927Google Scholar
  35. J.H. Petermann, D. Zielke, J. Schmidt, J. Prog, Photovolt. Res. Appl. 20, 1 (2012)CrossRefGoogle Scholar
  36. S. Retsch, S. Jentsch, H.J. Möller, Proc. 27th EU PVSEC (WIP, München, 2012), p. 947Google Scholar
  37. S. Retsch, M. Fuchs, H.J. Möller, Proc. 29th EU PVSEC (WIP, München, 2014), p. 123Google Scholar
  38. M. Reuter, Sol. Energy Mater. Sol. Cells 704, 93–96 (2008)Google Scholar
  39. R. Rietzschel, A. Senf, H.P. Seelmann-Eggebert, S. Kaminski, T. Wagner, C. Funke, H.J. Möller, Proc. 25th Europ. PVSEC (WIP, München, 2010), p. 1596Google Scholar
  40. S.A. Sergiienko, B. Pogorelov, V.B. Daniliuk, Sep. Purif. Technol. 133, 16 (2014)CrossRefGoogle Scholar
  41. L. J. Struble, G.K. Sun, in Flow and microstructure of dense suspensions, ed. by L. J. Struble, M. Zukoski and D. Maitland - Symposia Proc. Vol. 289 (Materials Research Society, Pittsburgh, 1993), pp. 173Google Scholar
  42. K. Tomono, H. Furuya, S. Miyamoto, Y. Okamura, M. Sumimoto, Y. Sakata, R. Komatsu, M. Nakayama, Sep. Purif. Technol. 103, 109 (2013)CrossRefGoogle Scholar
  43. K. Van Nieuwenhuysen, V. Depauw, R. Martini, J. Govaerts, M. Debucquoy, H.S. Radhakrishnan, I. Gordon, T. Bearda, K. Baert, J. Poortmans, Proc. 27th EU PVSEC (WIP, München, 2012), p. 2471Google Scholar
  44. T. Wagner, H.J. Möller, Proc. 23th EU PVSEC (WIP, München, 2008), p. 1315Google Scholar
  45. F.V. Wald, Crystals 5 (Springer, Berlin, 1981), p. 147Google Scholar
  46. T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Rai, C.W. Lan, J. Crystal Growth 310, 3403 (2008)CrossRefGoogle Scholar
  47. H.Y. Wang, Y. Tan, J.Y. Li, Y.Q. Li, W. Dong, Sep. Purif. Technol. 89, 91 (2012)CrossRefGoogle Scholar
  48. Y.F. Wu, Y.M. Chen, Sep. Purif. Technol. 68, 70 (2009)CrossRefGoogle Scholar
  49. C.F. Yang, H.P. Hsu, C.W. Lan, Sep. Purif. Technol. 149, 38 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fraunhofer Technology Center for Semiconductor MaterialsFreibergGermany

Section editors and affiliations

  • Hans Joachim Möller
    • 1
  1. 1.Fraunhofer Institute for Semiconductor TechnologyFraunhofer Institute for Solar Energy SystemsFreibergGermany

Personalised recommendations