Advertisement

Spezielle labortechnische Reaktoren: Wendelrohrreaktor

  • Michael JokielEmail author
  • Kai Sundmacher
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Aufgrund seiner Robustheit wird der Rührkesselreaktor industriell am meisten genutzt. Für bestimmte Anwendungen, insbesondere in der Hochdrucktechnik oder bei stark exothermen Reaktionen, sind Rohrreaktoren eine sehr gute Alternative. Im Vergleich zu geraden Rohrreaktoren ist in Wendelrohrreaktoren der radiale Wärme- und Stoffaustausch deutlich intensiviert, ohne dass aktiv zusätzlich Energie zugeführt werden muss. Im vorliegenden Kapitel werden die Eigenschaften der Wendelrohrreaktoren näher erläutert und konventionellen Rohrreaktoren gegenübergestellt.

Schlüsselwörter

Wendelrohr Coiled Flow Inverter Rohrreaktor Prozessintensivierung Mehrphasige Reaktionen Verweilzeitverhalten Reaktormodellierung 

Literatur

  1. Abdel-Aziz, M.H., Mansour, I.A.S., Sedahmed, G.H.: Study of the rate of liquid solid mass transfer controlled processes in helical tubes under turbulent flow conditions. Chem. Eng. Process. 49, 643–648 (2010).  https://doi.org/10.1016/j.cep.2009.06.004CrossRefGoogle Scholar
  2. Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 235, 67–77 (1956).  https://doi.org/10.1098/rspa.1956.0065CrossRefGoogle Scholar
  3. Awwad, A., Xin, R., Dong, Z., Ebadian, M., Soliman, H.: Flow patterns and pressure drop in air/water two-phase flow in horizontal helicoidal pipes. J. Fluids Eng. 117(4), 720–726 (1995).  https://doi.org/10.1115/1.2817328CrossRefGoogle Scholar
  4. Baerns, M., Behr, A., Brehm, A., Gmehling, J., Hofmann, H., Onken, U., Renken, A.: Technische Chemie, Bd. 1. WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim (2006)Google Scholar
  5. Banerjee, S., Rhodes, E., Scott, D.S.: Film inversion of focurrent two-phase flow in helical coils. AIChE J. 13(1), 189–191 (1967).  https://doi.org/10.1002/aic.690130137CrossRefGoogle Scholar
  6. Banerjee, S., Rhodes, E., Scott, D.S.: Studies on cocurrent gas-liquid flow in helically coiled tubes: I. Flow patterns, pressure drop and holdup. Can. J. Chem. Eng. 47, 445–453 (1969).  https://doi.org/10.1002/cjce.5450470509CrossRefGoogle Scholar
  7. Banerjee, S., Scott, D.S., Rhodes, E.: Studies on cocurrent gas liquid flow in helically coiled tubes II. Theory and experiments on turbulent mass transfer with and without chemical reaction. Can. J. Chem. Eng. 48, 542–551 (1970).  https://doi.org/10.1002/cjce.5450470509CrossRefGoogle Scholar
  8. Castelain, C., Mokrani, A., Legentilhomme, P., Peerhossaini, H.: Residence time distribution in twisted pipe flows: helically coiled system and chaotic system. Exp Fluids 22, 359–368 (1997).  https://doi.org/10.1007/s003480050061CrossRefGoogle Scholar
  9. Charpentier, J.-C.: Mass-transfer rates in gas-liquid absorbers and reactors. Adv. Chem. Eng. 11, 1–133 (1981).  https://doi.org/10.1016/S0065-2377(08)60025-3CrossRefGoogle Scholar
  10. Czop, V., Barbier, D., Dong, S.: Pressure drop, void fraction and shear stress measurements in an adiabatic two-phase flow in a coiled tube. Nucl. Eng. Des. 149(1–3), 323–333 (1994).  https://doi.org/10.1016/0029-5493(94)90298-4CrossRefGoogle Scholar
  11. Dreimann, J., Lutze, P., Zagajewski, M., Behr, A., Górak, A., Vorholt, A.J.: Highly integrated reactor–separator systems for the recycling of homogeneous catalysts. Chem. Eng. Process. 99, 124–131 (2016).  https://doi.org/10.1016/j.cep.2015.07.019CrossRefGoogle Scholar
  12. Erdogan, M.E., Chatwin, P.C.: The effects of curvature and buoyancy on the laminar dispersion of solute in a horizontal tube. J. Fluid Mech. 29(3), 465–484 (1967).  https://doi.org/10.1017/S0022112067000977CrossRefGoogle Scholar
  13. Fsadni, A.M., Whitty, J.P.M.: A review on the two-phase pressure drop characteristics in helically coiled tubes. Appl. Therm. Eng. 103, 616–638 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.04.125CrossRefGoogle Scholar
  14. Garimella, S., Richards, D.E., Christensen, R.N.: Experimental investigation of heat transfer in coiled annular ducts. J. Heat Transf. 110(2), 329–336 (1988)CrossRefGoogle Scholar
  15. Guo, L., Feng, Z., Chen, X.: An experimental investigation of the firctional prssure drop of steam-water two-phase flow in helical coils. Int. J. Heat Mass Transf. 44, 2601–6210 (2001).  https://doi.org/10.1016/S0017-9310(00)00312-4CrossRefGoogle Scholar
  16. Herrmann, C., Hübinger, W., Kremeskötter, J., Minges, R., Schmidt-Thümes, J., Moritz, H.U., Schmidt, W., Ridder, M.: Vorrichtung zur kontinuierlichen Durchführung chemischer Reaktionen. Deutschland WO 98/08602 Patent ( 1998)Google Scholar
  17. Hewitt, G.F., Jayanti, A.: Prediction of film inversion in two-phase flow in coiled tubes. J. Fluid Mech. 236, 497–511 (1992).  https://doi.org/10.1017/S0022112092001502CrossRefGoogle Scholar
  18. Jespen, J.C.: Mass transfer in two-phase flow in horizontal pipelines. AIChE J. 16(5), 705–711 (1970).  https://doi.org/10.1002/aic.690160504CrossRefGoogle Scholar
  19. Johnson, M.D., May, S.A., Calvin, J.R., Remacle, J., Stout, J.R., Diseroad, W.D., Zaborenko, N., Haeberle, B.D., Sun, W.-M., Miller, M.T., Brennan, J.: Development and scale-up of a continuous, high-pressure, asymmetric hydrogenation reaction, workup, and isolation. Org. Res. Dev. 16, 1017–1038 (2012).  https://doi.org/10.1021/op200362hCrossRefGoogle Scholar
  20. Johnson, M.J., May, S.A., Haeberle, B., Lambertus, G.R., Pulley, S.R., Stout, J.R.: Design and comparison of tubular and pipes-in-series continuous reactors for direct asymmetric reductive amination. Org. Process Res. Dev. 20, 1305–1320 (2016).  https://doi.org/10.1021/acs.oprd.6b00137CrossRefGoogle Scholar
  21. Jokiel, M., Wagner, L.-M., Mansour, M., Kaiser, N.M., Zähringer, K., Janiga, G., Nigam, K.D.P., Thévenin, D., Sundmacher, K.: Measurement and simulation of mass transfer and backmixing behavior in a gas-liquid helically coiled tubular reactor. Chem. Eng. Sci. 170, 410–421 (2017).  https://doi.org/10.1016/j.ces.2017.01.027CrossRefGoogle Scholar
  22. Jokiel, M., Kaiser, N.M., Kovats, P., Mansour, M., Zähringer, K., Nigam, K.D.P., Sundmacher, K.: Helically coiled segmented flow tubular reactor for the hydroformylation of long-chain olefins in a thermomorphic multicomponent solvent system. Chem. Eng. J. (2018).  https://doi.org/10.1016/j.cej.2018.09.221
  23. Kaiser, N.M., Jokiel, M., McBride, K., Flassig, R.J., Sundmacher, K.: Optimal reactor design via flux profile analysis for an integrated hydroformylation process. Ind. Eng. Chem. Res. 56, 11507–11518 (2017).  https://doi.org/10.1021/acs.iecr.7b01939CrossRefGoogle Scholar
  24. Kasturi, G., Stepanek, J.B.: Two phase flow I. Pressure drop and void fraction measurements in concurrent gas-liquid flow in a coil. Chem. Eng. Sci. 27, 1871–1880 (1972).  https://doi.org/10.1016/0009-2509(72)85049-8CrossRefGoogle Scholar
  25. Koutsky, J.A., Adler, R.J.: Minimization of axial dispersion by use of secondary flow in helical tubes. Can. J. Chem. Eng. 42, 239–246 (1964).  https://doi.org/10.1002/cjce.5450420602CrossRefGoogle Scholar
  26. Kováts, P., Pohl, D., Thévenin, D., Zähringer, K.: Optical determination of oxygen mass transfer in a helically-coiled pipe compared to a straight horizontal tube. Chem. Eng. Sci. 190, 273–285 (2018).  https://doi.org/10.1016/j.ces.2018.06.029CrossRefGoogle Scholar
  27. Kulic, E., Rhodes, E.: Chemical mass transfer in co current gas-liquid slug flow in helical coils. Can. J. Chem. Eng. 52, 114–116 (1974).  https://doi.org/10.1002/cjce.5450520118CrossRefGoogle Scholar
  28. Kumar, V., Aggarwal, M., Nigam, K.D.P.: Mixing in curved tubes. Chem. Eng. Sci. 61, 5742–5753 (2006).  https://doi.org/10.1016/j.ces.2006.04.040CrossRefGoogle Scholar
  29. Kumar, V., Mridha, M., Gupta, A.K., Nigam, K.D.P.: Coiled flow inverter as heat exchanger. Chem. Eng. Sci. 62, 2386–2396 (2007).  https://doi.org/10.1016/j.ces.2007.01.032CrossRefGoogle Scholar
  30. Kumar, T.A., Raju, G.M.J., Sarma, G.V.S., Ramesh, K.V.: Mass transfer at the confining wall of helically coiled circular tubes with gas-liquid flow and fluidized bed. Chem. Eng. J. 153, 114–119 (2009).  https://doi.org/10.1016/j.cej.2009.02.039CrossRefGoogle Scholar
  31. Kumar, R.H., Ramesh, K.V., Sarma, G.V.S., Raju, G.M.J.: Mass transfer at the confining wall of helically coiled circular tubes in the absence and presence of packed solids. Int. Commun. Heat Mass Transfer 38, 319–323 (2011).  https://doi.org/10.1016/j.icheatmasstransfer.2010.11.008CrossRefGoogle Scholar
  32. Kurt, S.K., Gürsel, I.V., Hessel, V., Nigam, K.D.P., Kockmann, N.: Liquid–liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications. Chem. Eng. J. 284, 764–777 (2016).  https://doi.org/10.1016/j.cej.2015.08.099CrossRefGoogle Scholar
  33. Kurt, S.K., Warnebolda, F., Nigam, K.D.P., Kockmann, N.: Gas-liquid reaction and mass transfer in microstructured coiled flow inverter. Chem. Eng. Sci. 169, 164–178 (2017).  https://doi.org/10.1016/j.ces.2017.01.017CrossRefGoogle Scholar
  34. Levenspiel, O.: Chemical Reaction Engineering, 3. Aufl. Wiley, New York/Chiochester/Weinheim/Brisbane/Singapore/Toronto (2004)Google Scholar
  35. Levenspiel, O.: The chemical reactor omnibook. Print on Demand by Lulu.com (2013)
  36. Lobedann, M., Klutz, S., Kurt, S.K.: Device and method for continuous virus inactivation. US 2016/0375159 A1 Patent (2016)Google Scholar
  37. Lockhart, R.W., Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45, 39–48 (1949)Google Scholar
  38. López-Guajardo, E., Ortiz-Nadal, E., Montesinos-Castellanos, A., Nigam, K.D.P.: Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction. Chem. Eng. Sci. 169, 179–185 (2017).  https://doi.org/10.1016/j.ces.2017.01.016CrossRefGoogle Scholar
  39. Mandal, S.M., Das, S.K.: Gas-liquid flow through helical coils in horizontal orientation. Can. J. Chem. Eng. 80, 979–983 (2002).  https://doi.org/10.1002/cjce.5450800522CrossRefGoogle Scholar
  40. Mansour, M., Liu, Z., Janiga, G., Nigam, K.D.P., Sundmacher, K., Thévenin, D., Zähringer, K.: Numerical study of liquid liquid mixing in helical pies. Chem. Eng. Sci. 172, 250–261 (2017).  https://doi.org/10.1016/j.ces.2017.06.015CrossRefGoogle Scholar
  41. Mazubert, A., Crockatt, M., Poux, M., Aubin, J., Roelands, M.: Reactor comparison for the esterification of fatty acids from waste cooking oil. Chem. Eng. Technol. 12(38), 2161–2169 (2015).  https://doi.org/10.1002/ceat.201500138CrossRefGoogle Scholar
  42. Mishra, P., Gupta, S.N.: Momentum transfer in curved pipes. 1. Newtonian fluids. Ind. Eng. Chem. Process. Des. Dev. 18(1), 131–137 (1979).  https://doi.org/10.1021/i260069a017CrossRefGoogle Scholar
  43. Mridha, M., Nigam, K.D.P.: Coiled flow inverter as an inline mixer. Chem. Eng. Sci. 63, 1724–1732 (2008).  https://doi.org/10.1016/j.ces.2007.10.028CrossRefGoogle Scholar
  44. Müller, M., Cunningham, M.F., Hutchinson, R.A.: Continious atom transfer radical polymerization in a tubular reactor. Mol. React. Eng. 2, 31–36 (2008).  https://doi.org/10.1002/mren.200700029CrossRefGoogle Scholar
  45. Nauman, E.B.: The residence time distribution for laminar flow in helically coiled tubes. Chem. Eng. Sci. 32, 287–293 (1977).  https://doi.org/10.1016/0009-2509(77)80207-8CrossRefGoogle Scholar
  46. Nauman, E.B.: Chemical Reactor Design, Optimization, and Scaleup, 2. Aufl. Wiley, Hoboken (2008)CrossRefGoogle Scholar
  47. Nigam, K.D.P., Saxena, A.K.: Residence time distribution in straight and curved tubes. In: Chermisinoff, N.P. (Hrsg.) Encyclopedia of Fluid Mechanics, Bd. 1, S. 675–762. Gulf Publishing Co., Morganville (1986)Google Scholar
  48. Nunge, R.J., Lin, T.-S., Gill, W.N.: Laminar dispersion in curved tubes and channels. J. Fluid Mech. 51(2), 363–383 (1972).  https://doi.org/10.1017/S0022112072001247CrossRefGoogle Scholar
  49. Runstraat, A.V.D., Geerdink, P., Lawrence, E., Goether, V.: Process and appratus for carrying out multi-phase reactions. Nederlande Patent, US2011/0112216 A1 (2011)Google Scholar
  50. Ruthven, D.M.: The residence time distribution for ideal laminar flow in a helical tube. Chem. Eng. Sci. 26(I), 113–112 (1971).  https://doi.org/10.1016/0009-2509(71)80025-8CrossRefGoogle Scholar
  51. Sauer, J., Dahem, N., Henrich, E.: Tubular plug flow reactors. In: Ullmann’s Encyclopedia of Industrial Chemistry, Electronic Release. Wiley-VCH, Weinheim (2013)Google Scholar
  52. Saxena, A.K., Nigam, K.D.P.: Effect of coil pitch and cross-sectional ellipticity on RTD for diffusion-free laminar flow in coiled tubes. Chem. Eng. Commun. 23(4–6), 277–289 (1983a).  https://doi.org/10.1080/00986448308940479CrossRefGoogle Scholar
  53. Saxena, A.K., Nigam, K.D.P.: Laminar dispersion in helically coiled tubes of square cross-section. Can. J. Chem. Eng. 61, 53–57 (1983b).  https://doi.org/10.1002/cjce.5450610109CrossRefGoogle Scholar
  54. Saxena, A.K., Nigam, K.D.P.: Coiled configuration for flow inversion and its effect on residence time distribution. AIChE J. 30(3), 363–368 (1984).  https://doi.org/10.1002/aic.690300303CrossRefGoogle Scholar
  55. Saxena, A.K., Nigam, K.D.P., Schumpe, A., Deckwer, W.D.: Liquid phase residence zime distribution for two phase flow in coiled tubes. Can. J. Chem. Eng. 74, 861–866 (1996).  https://doi.org/10.1002/cjce.5450740607CrossRefGoogle Scholar
  56. Schmidt, E.F.: Wärmeübergang und Druckverlust in Rohrschlangen. Chem. Ing. Tech. 39(13), 781–789 (1967).  https://doi.org/10.1002/cite.330391302CrossRefGoogle Scholar
  57. Shah, A.K., Sharma, M.M.: Mass transfer in a liquid liquid coil contactor. Can. J. Chem. Eng. 51, 772–775 (1973).  https://doi.org/10.1002/cjce.5450510625CrossRefGoogle Scholar
  58. Sharma, L.: Persönliche Kommunikation, Indian Institute of Technology Delhi, New Delhi 110016, India. (2018)Google Scholar
  59. Sharma, L., Nigam, K.D.P., Roy, S.: Axial dispersion in single and multiphase flows in coiled geometries: Radioactive particle tracking experiments. Chem. Eng. Sci. 157, 116–126 (2017a).  https://doi.org/10.1016/j.ces.2016.05.012CrossRefGoogle Scholar
  60. Sharma, L., Nigam, K.D.P., Roy, S.: Single phase mixing in coiled tubes and coiled flow inverters in different flow regimes. Chem. Eng. Sci. 160, 227–235 (2017b).  https://doi.org/10.1016/j.ces.2016.11.034CrossRefGoogle Scholar
  61. Singh, J., Nigam, K.D.P.: Pilot plant study for effective heat transfer area of coiled flow inverter. Chem. Eng. Process. 102, 219–228 (2016).  https://doi.org/10.1016/j.cep.2016.02.001CrossRefGoogle Scholar
  62. Sreenivasan, K.R., Strykowski, P.J.: Stabilization effects of flow through helically coiled pipes. Exp. Fluids. 1, 31–36 (1983).  https://doi.org/10.1007/BF00282264CrossRefGoogle Scholar
  63. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. 219(1137), 186–203 (1953).  https://doi.org/10.1098/rspa.1953.0139CrossRefGoogle Scholar
  64. Thandlam, A.K., Das, C., Majumder, S.K.: Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems. Heat Mass Transf. 53, 1183–1197 (2017).  https://doi.org/10.1007/s00231-016-1898-yCrossRefGoogle Scholar
  65. Trivedi, R.N., Vasudeva, K.: RTD for diffusion free laminar flow in helical coils. Chem. Eng. Sci. 29, 2291–2295 (1974).  https://doi.org/10.1016/0009-2509(74)80005-9CrossRefGoogle Scholar
  66. Trivedi, R.N., Vasudeva, K.: Axial dispersion in laminar flow in helical coils. Chem. Eng. Sci. 30, 317–325 (1975).  https://doi.org/10.1016/0009-2509(75)80081-9CrossRefGoogle Scholar
  67. Vashisth, S., Kumar, V., Nigam, K.D.P.: A review on the potential applications of curved geometries in process industry. Ind. Eng. Chem. Res. 47, 3291–3337 (2008).  https://doi.org/10.1021/ie701760hCrossRefGoogle Scholar
  68. VDI-Gesellschaft: VDI-Wärmeatlas, Bd. 11. Springer, Berlin/Heidelberg (2013)Google Scholar
  69. Verdoes, D., Goetheer, E.L.V., Hornstra-Xu, Z., Walpot, J.I.: Process and apparatus for carrying out crystallization. WO 2006/025741 A2 Patent, 2006Google Scholar
  70. Wiedmeyer, V., Anker, F., Bartsch, C., Voigt, A., John, V., Sundmacher, K.: Continuous crystallization in a helically coiled flow tube: analysis of flow field, residence time behavior, and crystal growth. Ind. Eng. Chem. Res. 56, 3699–3712 (2017a).  https://doi.org/10.1021/acs.iecr.6b04279CrossRefGoogle Scholar
  71. Wiedmeyer, V., Voigt, A., Sundmacher, K.: Crystal population growth in a continuous helically coiled flow tube crystallizer. Chem. Eng. Technol. 40(9), 1584–1590 (2017b).  https://doi.org/10.1002/ceat.201600530CrossRefGoogle Scholar
  72. Wu, K.-J., Michtet, G., Bohan, D.V., Murciano, L.T.: Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors. React. Chem. Eng. 2, 116–128 (2017).  https://doi.org/10.1039/C6RE00202ACrossRefGoogle Scholar
  73. Xin, R.C., Ebadian, M.A.: The effects of prandtl numbers on local and average convective heat transfer characteristics in helical pipes. J. Heat Transf. 119(3), 467–473 (1997).  https://doi.org/10.1115/1.2824120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Max-Planck-Institut für Dynamik komplexer technischer SystemeMagdeburgDeutschland
  2. 2.Max-Planck-Institut für Dynamik komplexer technischer Systeme, Lehrstuhl für Systemverfahrenstechnik, Otto-von-Guericke Universität MagdeburgMagdeburgDeutschland

Personalised recommendations