Advertisement

Reaktoren für spezielle technisch-chemische Prozesse: Tribochemische Reaktoren

  • Lars Borchardt
  • Sven Grätz
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Das Konzept „Grüne Chemie“ und die Forderung nach nachhaltigen chemischen Synthesen führen derzeit zu einer Renaissance tribochemischer bzw. mechanochemischer Reaktionen. Diese Art der Reaktionsführung verzichtet in vielen Fällen vollständig auf die Verwendung von Lösungsmitteln und Temperaturbehandlungen. Reaktionen werden durch Stoß-, Reibungs-, oder Scherkräfte von Mahlkörpern initiiert. Die verwendeten Reaktoren sind in der Regel Mühlen, die ursprünglich für das einfache Zermahlen und Zerkleinern von Feststoffen konzipiert wurden. Dieses Kapitel thematisiert unterschiedliche Mühlenkonzepte, erläutert wichtige Prozessparameter und gibt Beispiele, wie diese in tribochemischen Reaktionen in der aktuellen Forschung eingesetzt werden.

Schlüsselwörter

Mechanochemie Mühlen Kugelmühlen Mechanische Kräfte Lösungsmittelfrei Festkörperreaktion Nachhaltig Tribochemie 

Literatur

  1. Al-Terkawi, A.-A., Scholz, G., Emmerling, F., Kemnitz, E.: Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: mechanochemical synthesis and spectroscopic characterization. Solid State Sci. 79, 99–108 (2018).  https://doi.org/10.1016/j.solidstatesciences.2018.03.013CrossRefGoogle Scholar
  2. Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, New York (2000)Google Scholar
  3. Andersen, J.M., Mack, J.: Decoupling the Arrhenius equation via mechanochemistry. Chem. Sci. 8, 5447–5453 (2017).  https://doi.org/10.1039/C7SC00538ECrossRefPubMedPubMedCentralGoogle Scholar
  4. Baláž, P.: Mechanochemistry in Nanoscience and Minerals Engineering. Springer Berlin Heidelberg, Berlin/Heidelberg (2008)Google Scholar
  5. Batzdorf, L., Fischer, F., Wilke, M., Wenzel, K.-J., Emmerling, F.: Direct in situ investigation of milling reactions using combined X-ray diffraction and raman spectroscopy. Angew. Chem. Int. Ed. 54, 1799–1802 (2015).  https://doi.org/10.1002/anie.201409834CrossRefGoogle Scholar
  6. Boldyrev, V.V.: Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75, 177–189 (2006).  https://doi.org/10.1070/RC2006v075n03ABEH001205CrossRefGoogle Scholar
  7. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1958)Google Scholar
  8. Bowden, F.P., Yoffe, Y.D., Yoffe, A.D.: Initiation and Growth of Explosion in Liquids and Solids. Cambridge University Press, Cambridge (1952)CrossRefGoogle Scholar
  9. Burmeister, C.F., Kwade, A.: Process engineering with planetary ball mills. Chem. Soc. Rev. 42, 7660 (2013).  https://doi.org/10.1039/c3cs35455eCrossRefPubMedGoogle Scholar
  10. Burmeister, C., Titscher, L., Breitung-Faes, S., Kwade, A.: Dry grinding in planetary ball mills: evaluation of a stressing model. Adv. Powder Technol. 29, 191–201 (2018).  https://doi.org/10.1016/j.apt.2017.11.001CrossRefGoogle Scholar
  11. Cheung, E.Y., Kitchin, S.J., Harris, K.D.M., Imai, Y., Tajima, N., Kuroda, R.: Direct structure determination of a multicomponent molecular crystal prepared by a solid-state grinding procedure. J. Am. Chem. Soc. 125, 14658–14659 (2003).  https://doi.org/10.1021/ja030506sCrossRefPubMedGoogle Scholar
  12. Crawford, D.E., Casaban, J.: Recent developments in mechanochemical materials synthesis by extrusion. Adv. Mater. 28, 5747–5754 (2016).  https://doi.org/10.1002/adma.201505352CrossRefPubMedGoogle Scholar
  13. Crawford, D., Casaban, J., Haydon, R., Giri, N., McNally, T., James, S.L.: Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 6, 1645–1649 (2015).  https://doi.org/10.1039/C4SC03217ACrossRefPubMedPubMedCentralGoogle Scholar
  14. DiDomizio, R., Huang, S., Dial, L., Ilavsky, J., Larsen, M.: An assessment of milling time on the structure and properties of a nanostructured ferritic alloy (NFA). Metall. Mater. Trans. A. 45, 5409–5418 (2014).  https://doi.org/10.1007/s11661-014-2521-9CrossRefGoogle Scholar
  15. Do, J.-L., Friščić, T.: Chemistry 2.0: developing a new, solvent-free system of chemical synthesis based on mechanochemistry. Synlett. 28, 2066–2092 (2017).  https://doi.org/10.1055/s-0036-1590854CrossRefGoogle Scholar
  16. Do, J.-L., Tan, D., Friščić, T.: Oxidative mechanochemistry: direct, room-temperature, solvent-free conversion of palladium and gold metals into soluble salts and coordination complexes. Angew. Chem. 130, 2697–2701 (2018).  https://doi.org/10.1002/ange.201712602CrossRefGoogle Scholar
  17. Etter, M.C., Reutzel, S.M., Choo, C.G.: Self-organization of adenine and thymine in the solid state. J. Am. Chem. Soc. 115, 4411–4412 (1993).  https://doi.org/10.1021/ja00063a089CrossRefGoogle Scholar
  18. Faraday, M.: On the decomposition of chloride of silver, by hydrogen and zinc. Q. J. Sci. Lit. Arts. 8, 374 (1820)Google Scholar
  19. Ferguson, M., Giri, N., Huang, X., Apperley, D., James, S.L.: One-pot two-step mechanochemical synthesis: ligand and complex preparation without isolating intermediates. Green Chem. 16, 1374–1382 (2014).  https://doi.org/10.1039/C3GC42141DCrossRefGoogle Scholar
  20. Fischer, F., Wenzel, K.-J., Rademann, K., Emmerling, F.: Quantitative determination of activation energies in mechanochemical reactions. Phys. Chem. Chem. Phys. 18, 23.320–23.325 (2016).  https://doi.org/10.1039/C6CP04280ECrossRefGoogle Scholar
  21. Friščić, T.: New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 20, 7599–7605 (2010).  https://doi.org/10.1039/c0jm00872aCrossRefGoogle Scholar
  22. Gilman, J.J.: Mechanochemistry Science 80(274), 65–65 (1996).  https://doi.org/10.1126/science.274.5284.65CrossRefGoogle Scholar
  23. Gracin, D., Štrukil, V., Friščić, T., Halasz, I., Užarević, K.: Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman Spectroscopy. Angew. Chem. 126, 6307–6311 (2014).  https://doi.org/10.1002/ange.201402334CrossRefGoogle Scholar
  24. Grätz, S., Wolfrum, B., Borchardt, L.: Mechanochemical Suzuki polycondensation-from linear to hyperbranched polyphenylenes Green Chem. 19 (2017).  https://doi.org/10.1039/c7gc00693dCrossRefGoogle Scholar
  25. Grätz, S., Beyer, D., Tkachova, V., Hellmann, S., Berger, R., Feng, X., Borchardt, L.: The mechanochemical Scholl reaction – a solvent-free and versatile graphitization tool. Chem. Commun. 54, 5307–5310 (2018).  https://doi.org/10.1039/C8CC01993BCrossRefGoogle Scholar
  26. Halasz, I., Kimber, S.A.J., Beldon, P.J., Belenguer, A.M., Adams, F., Honkimäki, V., Nightingale, R.C., Dinnebier, R.E., Friščić, T.: In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nat. Protoc. 8, 1718–1729 (2013).  https://doi.org/10.1038/nprot.2013.100CrossRefPubMedGoogle Scholar
  27. Heinicke, G.: Tribochemistry. Akademie-Verlag, Berlin (1984)Google Scholar
  28. Hernández, J.G., Bolm, C.: Altering product delectivity by Mechanochemistry. J. Org. Chem. 82, 4007–4019 (2017).  https://doi.org/10.1021/acs.joc.6b02887CrossRefPubMedGoogle Scholar
  29. James, S.L., Adams, C.J., Bolm, C., Braga, D., Collier, P., Friščić, T., Grepioni, F., Harris, K.D.M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A.G., Parkin, I.P., Shearouse, W.C., Steed, J.W., Waddell, D.C.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).  https://doi.org/10.1039/C1CS15171ACrossRefPubMedGoogle Scholar
  30. Jayasankar, A., Somwangthanaroj, A., Shao, Z.J., Rodríguez-Hornedo, N.: Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm. Res. 23, 2381–2392 (2006).  https://doi.org/10.1007/s11095-006-9110-6CrossRefPubMedGoogle Scholar
  31. Juribašić, M., Užarević, K., Gracin, D., Ćurić, M.: Mechanochemical C–H bond activation: rapid and regioselective double cyclopalladation monitored by in situ Raman spectroscopy. Chem. Commun. 50, 10287–10290 (2014).  https://doi.org/10.1039/C4CC04423ACrossRefGoogle Scholar
  32. Katsenis, A.D., Puškarić, A., Štrukil, V., Mottillo, C., Julien, P.A., Užarević, K., Pham, M.-H., Do, T.-O., Kimber, S.A.J., Lazić, P., Magdysyuk, O., Dinnebier, R.E., Halasz, I., Friščić, T.: In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat. Commun. 6(6662) (2015).  https://doi.org/10.1038/ncomms7662
  33. Kaupp, G., Schmeyers, J., Naimi-Jamal, M.R., Zoz, H., Ren, H.: Reactive milling with the Simoloyer®: environmentally benign quantitative reactions without solvents and wastes. Chem. Eng. Sci. 57, 763–765 (2002).  https://doi.org/10.1016/S0009-2509(01)00430-4CrossRefGoogle Scholar
  34. Kaupp, G., Reza Naimi-Jamal, M., Schmeyers, J.: Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron 59, 3753–3760 (2003).  https://doi.org/10.1016/S0040-4020(03)00554-4CrossRefGoogle Scholar
  35. Kubalova, L.M., Fadeeva, V.I., Sviridov, I.A., Fedotov, S.A.: The synthesis of nanocrystalline Ni75Nb12B13 alloys by high energy ball milling of elemental components. J. Alloys Compd. 483, 86–88 (2009).  https://doi.org/10.1016/j.jallcom.2008.07.167CrossRefGoogle Scholar
  36. Kulla, H., Wilke, M., Fischer, F., Röllig, M., Maierhofer, C., Emmerling, F.: Warming up for mechanosynthesis – temperature development in ball mills during synthesis. Chem. Commun. 53, 1664–1667 (2017).  https://doi.org/10.1039/C6CC08950JCrossRefGoogle Scholar
  37. Lynch, A.J., Rowland, C.A.: The History of Grinding. Society for Mining. Metallurgy, and Exploration Inc, Littleton (2015)Google Scholar
  38. Ma, X., Yuan, W., Bell, S.E.J., James, S.L.: Better understanding of mechanochemical reactions: Raman monitoring reveals surprisingly simple ‘pseudo-fluid’ model for a ball milling reaction. Chem. Commun. 50, 1585 (2014).  https://doi.org/10.1039/c3cc47898jCrossRefGoogle Scholar
  39. Ohn, N., Shin, J., Kim, S.S., Kim, J.G.: Mechanochemical ring-opening polymerization of lactide: liquid-assisted grinding for the green synthesis of poly(lactic acid) with high molecular weight. ChemSusChem. 10, 3529–3533 (2017).  https://doi.org/10.1002/cssc.201700873CrossRefPubMedGoogle Scholar
  40. Rodríguez, B., Rantanen, T., Bolm, C.: Solvent-free asymmetric organocatalysis in a ball mill. Angew. Chem. 118, 7078–7080 (2006).  https://doi.org/10.1002/ange.200602820CrossRefGoogle Scholar
  41. Rubio-Martinez, M., Avci-Camur, C., Thornton, A.W., Imaz, I., Maspoch, D., Hill, M.R.: New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017).  https://doi.org/10.1039/C7CS00109FCrossRefPubMedGoogle Scholar
  42. Shan, N., Toda, F., Jones, W.: Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem. Commun. 20(20), 2372–2373 (2002).  https://doi.org/10.1039/b207369m
  43. Stolle, A., Schmidt, R., Jacob, K.: Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale. Faraday Discuss. 170, 267–286 (2014).  https://doi.org/10.1039/C3FD00144JCrossRefPubMedGoogle Scholar
  44. Takacs, L.: Quicksilver from cinnabar: the first documented mechanochemical reaction? JOM. 52, 12–13 (2000).  https://doi.org/10.1007/s11837-000-0106-0CrossRefGoogle Scholar
  45. Takacs, L.: M. Carey Lea, the first mechanochemist. J. Mat. Sci. 39(16–17), 4987–4993 (2004).  https://doi.org/10.1023/B:JMSC.0000039175.73904.93CrossRefGoogle Scholar
  46. Thiessen, P.A., Meyer, K., Heinicke, G.: Grundlagen der Tribochemie. Akademie-Verlag, Berlin (1967)Google Scholar
  47. Thorwirth, R., Bernhardt, F., Stolle, A., Ondruschka, B., Asghari, J.: Switchable selectivity during oxidation of anilines in a ball mill. Chem. – A Eur. J. 16, 13236–13242 (2010).  https://doi.org/10.1002/chem.201001702CrossRefGoogle Scholar
  48. Trask, A.V., Motherwell, W.D.S., Jones, W.: Solvent-drop grinding: green polymorph control of cocrystallisation. Chem. Commun. 0, 890 (2004).  https://doi.org/10.1039/b400978aCrossRefGoogle Scholar
  49. Troschke, E., Grätz, S., Lübken, T., Borchardt, L.: Mechanochemical friedel-crafts alkylation-A sustainable pathway towards porous organic polymers. Angew. Chem. 129, 6963–6967 (2017).  https://doi.org/10.1002/ange.201702303CrossRefGoogle Scholar
  50. Užarević, K., Štrukil, V., Mottillo, C., Julien, P.A., Puškarić, A., Friščić, T., Halasz, I.: Exploring the effect of temperature on a mechanochemical reaction by in situ synchrotron pPowder X-ray diffraction. Cryst. Growth Des. 16, 2342–2347 (2016).  https://doi.org/10.1021/acs.cgd.6b00137CrossRefGoogle Scholar
  51. Waddell, D.C., Mack, J.: An environmentally benign solvent-free Tishchenko reaction. Green Chem. 11, 79–82 (2009).  https://doi.org/10.1039/B810714ACrossRefGoogle Scholar
  52. Wang, G.-W., Komatsu, K., Murata, Y., Shiro, M.: Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387, 583–586 (1997).  https://doi.org/10.1038/42439CrossRefGoogle Scholar
  53. Weichert, R., Schönert, K.: On the temperature rise at the tip of a fast running crack†. J. Mech. Phys. Solids. 22, 127–133 (1974).  https://doi.org/10.1016/0022-5096(74)90018-0CrossRefGoogle Scholar
  54. Yang, H., Zhang, X., Ao, W., Qiu, G.: Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater. Res. Bull. 39, 833–837 (2004).  https://doi.org/10.1016/j.materresbull.2004.02.001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Anorganische ChemieTechnische Universität DresdenDresdenDeutschland
  2. 2.Fakultät Mathematik und Naturwissenschaften | Fachrichtung Chemie und LebensmittelchemieTechnische Universität DresdenDresdenDeutschland

Personalised recommendations