Advertisement

Reaktoren für Dreiphasen-Reaktionen: Rieselbettreaktoren

  • Markus SchubertEmail author
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Der Einfluss von betrieblichen Bedingungen, Katalysatoreigenschaften und Reaktorabmessungen auf das Verhalten von Rieselbettreaktoren für heterogen-katalysierte Gas-Flüssig-Reaktionen wird illustriert. Dabei liegt der Schwerpunkt auf der Beschreibung der komplexen Hydrodynamik und der Transportprozesse sowie deren Berücksichtigung bei der Reaktormodellierung. Zusätzlich werden Aspekte der Prozessentwicklung auf Basis von Laborexperimenten beleuchtet und Kriterien zur Bewertung der Abweichung vom idealen Rohrreaktor diskutiert. Zur Überwindung von Stofftransportlimitierungen werden Intensivierungskonzepte für Rieselbettreaktoren vorgestellt.

Schlüsselwörter

Rieselbettreaktor Regellose Schüttung Gas-Flüssig-Strömung Hydrodynamik Stofftransport Wärmetransport Modellierung Übertragung und Skalierung Prozessintensivierung 

Literatur

  1. Al-Dahhan, M.H., Dudukovic, M.P.: Catalyst bed dilution for improving catalyst wetting in laboratory trickle-bed reactors. AIChE J. 42, 2594–2606 (1996)Google Scholar
  2. Al-Dahhan, M.H., Highfill, W.: Liquid holdup measurement techniques in laboratory high pressure trickle bed reactors. Can. J. Chem. Eng. 77, 759–765 (1999)Google Scholar
  3. Al-Dahhan, M.H., Larachi, F., Dudukovic, M.P., Laurent, A.: High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997)Google Scholar
  4. Al-Dahhan, M.H., Wu, Y., Dudukovic, M.P.: Reproducible technique for packing laboratory-scale trickle-bed reactors. Ind. Eng. Chem. Res. 34, 741–747 (1995)Google Scholar
  5. Alicilar, A., Bicer, A., Murathan, A.: The relation between wetting efficiency and liquid holdup in packed columns. Chem. Eng. Commun. 128, 95–107 (1994)Google Scholar
  6. Anadon, L.D., Sederman, A.J., Gladden, F.L.: Rationalising MRI, conductance and pressure drop measurements of the trickle-to-pulse transition in trickle beds. Chem. Eng. Sci. 63, 4640–4648 (2008)Google Scholar
  7. Ancheyta, J., Marroquin, G., Angeles, M.J., Macias, M.J., Pitault, I., Forisser, M., Morales, R.D.: Some experimental observation of mass transfer limitation in a trickle-bed hydrotreating pilot reactor. Energy Fuel 16, 1059–1067 (2002)Google Scholar
  8. Anderson, J.B.: A criterion for isothermal behavior of catalyst pellet. Chem. Eng. Sci. 18, 147–148 (1963)Google Scholar
  9. Aris, R.: Notes on the diffusion-type model for longitudinal mixing in flows. Chem. Eng. Sci. 9, 266–267 (1959)Google Scholar
  10. Atta, A., Hamidipour, M., Roy, S., Nigam, K.D.P., Larachi, F.: Propagation of slow/fast-mode solitary liquid waves in trickle beds via electrical capacitance tomography and computational fluid dynamics. Chem. Eng. Sci. 65, 1144–1150 (2010a)Google Scholar
  11. Atta, A., Schubert, M., Nigam, K.D.P., Roy, S., Larachi, F.: Co-current descending two-phase flow in inclined packed beds: experiments versus simulations. Can. J. Chem. Eng. 88, 742–750 (2010b)Google Scholar
  12. Atta, A., Roy, S., Larachi, F., Nigam, K.D.P.: Cyclic operation of trickle bed reactors: a review. Chem. Eng. Sci. 115, 205–214 (2014)Google Scholar
  13. Atta, A., Roy, S., Nigam, K.D.P.: Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD. Chem. Eng. Sci. 62, 5870–5879 (2007a)Google Scholar
  14. Atta, A., Roy, S., Nigam, K.D.P.: Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD. Chem. Eng. Sci. 62, 7033–7044 (2007b)Google Scholar
  15. Attou, A., Boyer, C.: Hydrodynamics of gas-liquid-solid trickle-bed reactors: a critical review. Oil Gas Sci. Technol. 54, 29–66 (1999)Google Scholar
  16. Attou, A., Boyer, C., Ferschneider, G.: Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chem. Eng. Sci. 54, 785–802 (1999)Google Scholar
  17. Attou, A., Ferschneider, G.: A two-fluid hydrodynamic model for the transition between trickle and pulse flow in a cocurrent gas-liquid packed-bed reactor. Chem. Eng. Sci. 55, 491–511 (2000)Google Scholar
  18. Aydin, B., Bilodeau, S., Hamidipour, M., Larachi, F., Kleitz, F.: Polymer-filled composite porous catalytic particles for hydrodynamic studies in trickle-bed reactors. Ind. Eng. Chem. Res. 47, 2569–2578 (2008)Google Scholar
  19. Babcock, B.D., Mejdell, G.T., Hougen, O.A.: Catalyzed gas-liquid reactions in trickling-bed reactors. 1. Hydrogenation of α-methylstyrene catalyzed by palladium. AIChE J. 3, 366–369 (1957)Google Scholar
  20. Banchero, M., Manna, L., Sicardi, S., Ferri, A.: Experimental investigation of fast-mode liquid modulation in a trickle-bed reactor. Chem. Eng. Sci. 59, 4149–4154 (2004)Google Scholar
  21. Battsengel, B., Datsevich, L.B., Jess, A., Munnich, C., Peter, S., Turek, T.: Use of a two-phase reactor with pre-saturator for multiphase reactions. Chem. Ing. Tech. 75, 553–558 (2003)Google Scholar
  22. Baussaron, L., Julcour-Lebigue, C., Wilhelm, A.-M., Boyer, C., Delmas, H.: Partial wetting in trickle bed reactors: measurement techniques and global wetting efficiency. Ind. Eng. Chem. Res. 46, 8397–8405 (2007)Google Scholar
  23. Bej, S.K., Dabral, R.P., Gupta, P.C., Mittal, K.K., Sen, G.S., Kapoor, V.K., Dalai, A.K.: Studies on the performance of a microscale trickle bed reactor using different size of diluent. Energy Fuel 14, 701–705 (2000)Google Scholar
  24. Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., Terzoni, G.: Liquid-phase alkylation of benzene with light olefins catalyzed by β-zeolites. J. Catal. 157, 227–234 (1995)Google Scholar
  25. Beziat, J.-C., Besson, M., Gallezot, P., Durecu, S.: Catalytic wet air oxidation on a Ru/TiO2 catalyst in a trickle-bed reactor. Ind. Eng. Chem. Res. 38, 1310–1315 (1999)Google Scholar
  26. Bieberle, A., Schubert, M., da Silva, M.J., Hampel, U.: Measurement of liquid distributions in particle packings using wire-mesh sensor versus transmission tomographic imaging. Ind. Eng. Chem. Res. 49, 9445–9453 (2010)Google Scholar
  27. Blok, J.R., Varkevisser, J., Drinkenburg, A.A.H.: Transition to pulsing flow, holdup and pressure drop in packed columns with cocurrent gas-liquid downflow. Chem. Eng. Sci. 38, 687–699 (1983)Google Scholar
  28. Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: Particle–liquid heat transfer in trickle-bed reactors. Chem. Eng. Sci. 56, 1181–1187 (2001a)Google Scholar
  29. Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: The induction of pulses in trickle-bed reactors by cycling the liquid feed. Chem. Eng. Sci. 56, 2605–2614 (2001b)Google Scholar
  30. Borremans, D., Rode, S., Wild, G.: Liquid flow distribution and particle-fluid heat transfer in trickle-bed reactors: the influence of periodic operation. Chem. Eng. Process. 43, 1403–1410 (2004)Google Scholar
  31. Boyer, C, Duquenne, A.M., Wild, G.: Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem. Eng. Sci. 57, 3185–3215 (2002)Google Scholar
  32. Boyer, C., Koudil, A., Chen, P., Dudukovic, M.P.: Study of liquid spreading from a point source in a trickle bed via gamma-ray tomography and CFD simulation. Chem. Eng. Sci. 60, 6279–6288 (2005)Google Scholar
  33. Buffham, B.A., Gibilaro, L.G., Rathor, M.N.: A probabilistic time delay description of flow in packed beds. AIChE J. 16, 218–223 (1970)Google Scholar
  34. Bukur, D.B., Patel, S.A., Lang, X.S.: Fixed-bed and slurry reactor studies of Fischer-Tropsch synthesis on precipitated iron catalyst. Appl. Catal. 61, 329–349 (1990)Google Scholar
  35. Burghardt, A., Kolodziej, A.S.: Dynamic method for determining of liquid-solid contacting efficiency in trickle-bed reactors. Chem. Process. Eng-Inz. 11, 553–573 (1990)Google Scholar
  36. Burghardt, A., Kolodziej, A.S., Jaroszynski, M.: Experimental studies of liquid solid wetting efficiency in trickle-bed cocurrent reactors. Chem. Eng. Process. 28, 35–49 (1990)Google Scholar
  37. Burghardt, A., Zaleski, T.: Longitudinal dispersion at small and large Péclet numbers in chemical flow reactors. Chem. Eng. Sci. 23, 575–591 (1968)Google Scholar
  38. Cassanello, M., Larachi, F., Laurent, A., Wild, G., Midoux, N.: Gas-liquid mass transfer in high pressure trickle-bed reactors: experiments and modelling. In: von Rohr, P.R., Trepp, C. (Hrsg.) High Pressure Chemical Engineering, Bd. 12, S. 493–498. Elsevier, Amsterdam (1996)Google Scholar
  39. Castellari, A.T., Haure, P.M.: Experimental study of the periodic operation of a trickle-bed reactor. AIChE J. 41, 1593–1597 (1995)Google Scholar
  40. Chan, J.-C., Tan, C.-S.: Hydrogenation of tetralin over Pt/γ-Al2O3 in trickle-bed reactor in the presence of compressed CO2. Energy Fuel 20, 771–777 (2006)Google Scholar
  41. Charpentier, J.C., Favier, M.: Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AIChE J. 21, 1213–1218 (1975)Google Scholar
  42. Chaudhari, R.V., Jaganathan, R., Mathew, S.P., Julcour, C., Delmas, H.: Hydrogenation of 1,5,9-cyclododecatriene in fixed-bed reactors: down- vs. upflow modes. AIChE J. 48, 110–125 (2002)Google Scholar
  43. Chaudhari, R.V., Ramachandran, P.A.: Three-phase slurry reactors. AIChE J. 26, 177–201 (1980)Google Scholar
  44. Colombo, A.J., Baldi, G., Sicardi, S.: Solid-liquid contacting effectiveness in trickle bed reactors. Chem. Eng. Sci. 31, 1101–1108 (1976)Google Scholar
  45. Couto, C.S., Madeira, L.M., Nunes, C.P., Araújo, P.: Liquid-phase hydrogenation of nitrobenzene in a tubular reactor: parametric study of the operating conditions influence. Ind. Eng. Chem. Res. 56, 3231–3242 (2017)Google Scholar
  46. Crine, M.: Heat-transfer phenomena in trickle-bed reactors. Chem. Eng. Commun. 19, 99–114 (1982)Google Scholar
  47. Crine, M., Marchot, P.: Measuring dynamic liquid holdup in trickle-bed reactors under actual operating conditions. Chem. Eng. Commun. 8, 365–371 (1981)Google Scholar
  48. Cybulski, A., Moulijn, J.A.: Structured Catalysts and Reactors, 2. Aufl. Taylor & Francis, Boca Raton (2006)Google Scholar
  49. Dashliborun, A.M., Härting, H.-U., Schubert, M., Larachi, F.: Process intensification of gas-liquid downflow and upflow packed beds by a new low-shear rotating reactor concept. AIChE J. 63, 283–294 (2017)Google Scholar
  50. Dashliborun, A.M., Larachi, F.: CFD study and experimental validation of multiphase packed bed hydrodynamics in the context of rolling sea conditions. AIChE J. 65, 385–397 (2019)Google Scholar
  51. Datsevich, L.B., Mukhortov, D.A.: Pre-saturation in multiphase fixed-bed reactors as a method for process intensification/reactor minimization. Catal. Today 120, 71–77 (2007)Google Scholar
  52. Dhiman, S.K., Verma, V., Rao, D.P., Rao, M.S.: Process intensification in a trickle-bed reactor: experimental studies. AIChE J. 51, 3186–3192 (2005)Google Scholar
  53. Dietrich, W., Grünewald, M., Agar, D.W.: Dynamic modelling of periodically wetted catalyst particles. Chem. Eng. Sci. 60, 6254–6261 (2005)Google Scholar
  54. Dixon, A.G., Nijemaisland, M., Stitt, E.H.: Packed tubular reactor modelling and catalyst design using computational fluid dynamics. Adv. Chem. Eng. 31, 307–389 (2006)Google Scholar
  55. Dudas, J., Hanika, J., Lepuru, J., Barkhuysen, M.: Thymol hydrogenation in bench scale trickle bed reactor. Chem. Biochem. Eng. Q. 19, 255–262 (2005)Google Scholar
  56. Dudukovic, M.P., Larachi, F., Mill, P.L.: Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal. Rev. 44, 123–246 (2002)Google Scholar
  57. Dudukovic, M.P., Mills, P.L.: Contacting and hydrodynamics in trickle-bed reactors. In: Cheremisinoff, N.P. (Hrsg.) Encyclopedia of Fluid Mechanics, Bd. 3, S. 969–1017. Gulf Publishing, Houston (1986)Google Scholar
  58. Edvinsson, A.R., Nyström, M., Siverström, M., Sellin, A., Dellve, A.-C., Andersson, U., Herrmann, W., Berglin, T.: Development of a monolith-based process for H2O2 production: from idea to large-scale implementation. Catal. Today 69, 247–252 (2001)Google Scholar
  59. El-Hisnawi, A.A., Dudukovic, M.P., Mills, P.L.: Trickle-bed reactors – dynamic tracer tests, reaction studies, and modeling of reactor performance. ACS Symp. Ser. 196, 421–440 (1982)Google Scholar
  60. Ellman, M.J., Midoux, N., Laurent, A., Charpentier, J.C.: A new, improved pressure-drop correlation for trickle-bed reactors. Chem. Eng. Sci. 43, 2201–2206 (1988)Google Scholar
  61. Ellman, M.J., Midoux, N., Wild, G., Laurent, A., Charpentier, J.C.: A new, improved liquid hold-up correlation for trickle-bed reactors. Chem. Eng. Sci. 45, 1677–1684 (1990)Google Scholar
  62. Enache, D.I., Landon, P., Lok, C.M., Pollington, S.D., Stitt, E.H.: Direct comparison of a trickle bed and a monolith for hydrogenation of pyrolysis gasoline. Ind. Eng. Chem. Res. 44, 9431–9439 (2005)Google Scholar
  63. Fahien, R.W., Stankovic, I.M.: An equation for the velocity profile in packed columns. Chem. Eng. Sci. 34, 1350–1354 (1979)Google Scholar
  64. Fordham, P., Besson, M., Gallezot, P.: Selective catalytic oxidation with air of glycerol and oxygenated derivatives on platinum metals. In: Hightower, J., Delgass, W.N., Iglesia, E., Bell, A.T. (Hrsg.) Studies in Surface Science and Catalysis, Bd. 101, S. 161–170. Elsevier, Amsterdam (1996)Google Scholar
  65. Fortuny, A., Font, J., Fabregat, A.: Wet air oxidation of phenol using active carbon as catalyst. Appl Catal B. 19, 165–173 (1998)Google Scholar
  66. Freund, H., Lämmermann, M., Busse, C., Schwieger, W.: Additive manufacturing of tailor-made catalytic reactors for single phase and multiphase reaction systems. 25th international symposium on chemical reaction engineering, Florence (2018)Google Scholar
  67. Fu, M.S., Tan, C.S.: Liquid holdup and axial dispersion in trickle-bed reactors. Chem. Eng. Sci. 51, 5357–5361 (1996)Google Scholar
  68. Fukushima, S., Kusaka, K.: Interfacial area and boundary of hydrodynamic flow region in packed column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 461–467 (1977a)Google Scholar
  69. Fukushima, S., Kusaka, K.: Liquid-phase volumentric and mass-transfer coefficient and boundary of hydrodynamic flow region in packed-column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 468–474 (1977b)Google Scholar
  70. Gallezot, P., Nicolaus, N., Flèche, G., Fuertes, P., Perrard, A.: Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. J. Catal. 180, 51–55 (1998)Google Scholar
  71. Garcia, G.E.C., van der Schaaf, J., Kiss, A.A.: A review on process intensification in HiGee distillation. J. Chem. Eng. Technol. Biotechnol. 92, 1136–1156 (2017)Google Scholar
  72. Garcia-Serna, J., Gallina, G., Biasi, P., Salmi, T.: Liquid holdup by gravimetric recirculation continuous measurement method. Application to trickle bed reactors under pressure at laboratory scale. Ind. Eng. Chem. Res. 56, 13.295–13.301 (2017)Google Scholar
  73. Gascon, J., van Ommen, J.R., Moulijn, J.A., Kapteijn, F.: Structuring catalyst and reactor – an inviting avenue to process intensification. Cat. Sci. Technol. 5, 807–817 (2015)Google Scholar
  74. Gelhausen, M.G., Yang, S.Q., Cegla, M., Agar, D.W.: Cyclic mass transport phenomena in a novel reactor for gas-liquid-solid contacting. AIChE J. 63, 208–215 (2017)Google Scholar
  75. Germain, A.H., LeFebvre, A.G., L’Homme, G.A.: Experimental study of a catalytic trickle bed reactor. Adv. Chem. Ser. 133, 164–180 (1974)Google Scholar
  76. Gianetto, A., Berruti, F.: Modelling of trickle bed reactors. In: de Lasa, H.I. (Hrsg.) Chemical Reactor Design and Technology NATO ASI Series 110, S. 631–685. Springer, Dordrecht (1986)Google Scholar
  77. Gianetto, A., Specchia, V.: Trickle-bed reactors – state of art and perspectives. Chem. Eng. Sci. 47, 3197–3213 (1992)Google Scholar
  78. Gianetto, A., Specchia, V., Baldi, G.: Absorption in packed towers with concurrent downward high-velocity flows. 2. Mass-transfer. AIChE J. 19, 916–922 (1973)Google Scholar
  79. Gierman, H.: Design of laboratory hydrotreating reactors – scaling down of trickle-flow reactors. Appl. Catal. 43, 277–286 (1988)Google Scholar
  80. Gladden, L.F., Lim, M.H.M., Mantle, M.D., Sederman, A.J., Stitt, E.H.: MRI visualisation of two-phase flow in structured supports and trickle-bed reactors. Catal. Today 79, 203–210 (2003)Google Scholar
  81. Goto, S., Chatani, T., Matouq, M.H.: Hydration of 2-methyl-2-butene in gas-liquid cocurrent upflow and downflow reactors. Can. J. Chem. Eng. 71, 821–823 (1993)Google Scholar
  82. Goto, S., Levec, J., Smith, J.M.: Mass-transfer in packed-beds with two-phase flow. Ind. Eng. Chem. Proc. Des. Dev. 14, 473–478 (1975)Google Scholar
  83. Goto, S., Smith, J.M.: Trickle-bed reactor performance. 1. Holdup and mass-transfer effects. AIChE J. 21, 706–713 (1975)Google Scholar
  84. Govindarao, V.M.H., Fromet, G.F.: Voidage profiles in packed beds of spheres. Chem. Eng. Sci. 41, 553–539 (1986)Google Scholar
  85. Govindarao, V.M.H., Murthy, K.V.R.: Liquid-phase hydrogenation of aniline in a trickle bed reactor. J. Appl. Chem. Biotechnol. 25, 169–181 (1975)Google Scholar
  86. Grosser, K., Carbonell, R.G., Sundaresan, S.: Onset of pulsing in two-phase concurrent downflow through a packed-bed. AIChE J. 34, 1850–1860 (1988)Google Scholar
  87. Gunjal, P.R., Kashid, M.N., Ranade, V.V., Chaudhari, R.V.: Hydrodynamics of trickle-bed reactors: experiments and CFD modeling. Ind. Eng. Chem. Res. 44(16), 6278–6294 (2005)Google Scholar
  88. Gunjal, P.R., Ranade, V.V.: Modeling of laboratory and commercial scale hydro-processing reactors using CFD. Chem. Eng. Sci. 62, 5512–5526 (2007)Google Scholar
  89. Gupta, R.: Pulsed flow vapor-liquid reactors. U.S. Patent 4,526,757 (1985)Google Scholar
  90. Hamidipour, M., Larachi, F., Ring, Z.: Monitoring filtration in trickle beds using electrical capacitance tomography. Ind. Eng. Chem. Res. 48, 1140–1153 (2009)Google Scholar
  91. Hampel, U., Dittmeyer, R., Patyk, A., Wetzel, T., Lange, R., Freund, H., Schwieger, W., Grünewald, M., Schlüter, M., Petasch, U.: The Helmholtz Energy Alliance „Energy efficient multiphase chemical processes“. Chem. Ing. Tech. 85, 992–996 (2013)Google Scholar
  92. Hanika, J., Kucharova, M., Kolena, J., Smejkal, Q.: Multi-functional trickle bed reactor for butylacetate synthesis. Catal. Today 79, 83–87 (2002)Google Scholar
  93. Härting, H.-U., Berger, R., Lange, R., Larachi, F., Schubert, M.: Liquid backmixing in an inclined rotating tubular fixed bed reactor – augmenting liquid residence time via flow regime adjustment. Chem. Eng. Process. 94, 2–10 (2015c)Google Scholar
  94. Härting, H.-U., Bieberle, A., Lange, R., Larachi, F., Schubert, M.: Hydrodynamics of co-current two-phase flow in an inclined rotating tubular fixed bed reactor – wetting intermittency via periodic catalyst immersion. Chem. Eng. Sci. 128, 147–158 (2015b)Google Scholar
  95. Härting, H.-U., Lange, R., Larachi, F., Schubert, M.: A novel inclined rotating tubular fixed bed reactor concept for enhancement of reaction rates and adjustment of flow regimes. Chem. Eng. J. 281, 931–944 (2015a)Google Scholar
  96. Hashimoto, K., Muroyama, K., Fujiyoshi, K., Nagata, S.: Effective radial thermal conductivity in concurrent flow of a gas and liquid through a packed bed. Int. Chem. Eng. 16, 720–727 (1976)Google Scholar
  97. Haure, P., Silveston, P.L., Hudgins, R.R., Bellut, M.: Conversion efficiency in trickle bed reactors. U.S. Patent 5,011,675 (1988)Google Scholar
  98. Hochman, J.M., Efron, E.: Two-phase cocurrent downflow in packed beds. Ind. Eng. Chem. Fundam. 8, 63–71 (1969)Google Scholar
  99. Hofmann, H.: Hydrodynamics, transport phenomena, and mathematical models in trickle-bed reactors. Int. Chem. Eng. 17, 19–28 (1977)Google Scholar
  100. Holub, R.A., Dudukovic, M.P., Ramachandran, P.A.: A phenomenological model of pressure drop, liquid hold-up and flow regime transition in gas-liquid trickle flow. Chem. Eng. Sci. 47, 2343–2348 (1992)Google Scholar
  101. Honda, G.S., Lehmann, E., Hickman, D.A., Varma, A.: Effects of prewetting on bubbly- and pulsing-flow regime transitions in trickle-bed reactors. Ind. Eng. Chem. Res. 54, 10.253–10.259 (2015)Google Scholar
  102. Houwelingen, A.J. van, Nicol, W.: Parallel hydrogenation for the quantification of wetting efficiency and liquid-solid mass transfer in a trickle-bed reactor. AIChE J. 57, 1310–1319 (2011)Google Scholar
  103. Houwelingen, A. J. van, Sandrock, C., Nicol, W.: Particle wetting distribution in trickle-bed reactors. AIChE J. 52, 3532–3542 (2006)Google Scholar
  104. Huang, T.-C., Kang, B.-C.: Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst. Ind. Eng. Chem. Res. 34, 1140–1148 (1995)Google Scholar
  105. Huang, X., Varma, A., McCready, M.J.: Heat transfer characterization of gas-liquid flows in a trickle-bed. Chem. Eng. Sci. 59, 3767–3776 (2004)Google Scholar
  106. Iliuta, I., Aydin, B., Larachi, F.: Onset of pulsing in trickle beds with non-Newtonian liquids at elevated temperature and pressure – modeling and experimental verification. Chem. Eng. Sci. 61, 526–537 (2006)Google Scholar
  107. Iliuta, I., Bozga, G., Lupascu, M.: Liquid-phase alkylation of benzene with propylene catalysed by HY zeolites. Chem. Eng. Technol. 24, 933–944 (2001)Google Scholar
  108. Iliuta, I., Larachi, F., Al-Dahhan, M.H.: Double-slit model for partially wetted trickle flow hydrodynamics. AIChE J. 46, 597–609 (2000)Google Scholar
  109. Janecki, D., Burghardt, A., Bartelmus, G.: Computational simulation of the hydrodynamic parameters of a trickle-bed reactor operating at periodically changing feeding the bed with liquid. Chem. Process. Eng. 29, 583–596 (2008)Google Scholar
  110. Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD modeling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catal. Today 66, 209–218 (2001)Google Scholar
  111. Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: I. k-fluid modeling issues. AIChE J. 48, 701–715 (2002a)Google Scholar
  112. Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: II. Results and application. AIChE J. 48, 716–730 (2002b)Google Scholar
  113. Joubert, R., Nicol, W.: Trickle flow liquid-solid mass transfer and wetting efficiency in small diameter columns. Can. J. Chem. Eng. 91, 441–447 (2013)Google Scholar
  114. Julcour-Lebigue, C., Baussaron, L., Delmas, H., Wilhelm, A.-M.: Theoretical analysis of tracer method for the measurement of wetting efficiency. Chem. Eng. Sci. 62, 5374–5379 (2007)Google Scholar
  115. Kan, K.M., Greenfield, P.F.: Multiple hydrodynamic states in concurrent two-phase downflow through packed-beds. Ind. Eng. Chem. Process Des. Dev. 17(4), 482–485 (1978)Google Scholar
  116. Kan, K.M., Greenfield, P.F.: Pressure-drop and holdup in two-phase concurrent trickle flows through beds of small packings. Ind. Eng. Chem. Process. Des. Dev. 18, 740–746 (1979)Google Scholar
  117. Kang, S.-H., Bae, J.W., Cheon, J.-Y., Lee, Y.-J., Ha, K.-S., Jun, K.-W., Lee, D.-H., Kim, B.-W.: Catalytic performance on iron-based Fischer-Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor. Appl Catal B. 103(1–2), 169–180 (2011)Google Scholar
  118. Kawase, Y., Ulbrecht, J.J.: Motion of and mass-transfer from an assemblage of solid spheres moving in a non-Newtonian fluid at high Reynolds numbers. Chem. Eng. Commun. 8, 233–249 (1981)Google Scholar
  119. Keil, F.J.: Process intensification. Rev. Chem. Eng. 34, 135–200 (2018)Google Scholar
  120. Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: Parametric study of unsteady-state flow modulation in trickle-bed reactors. Chem. Eng. Sci. 54, 2585–2595 (1999)Google Scholar
  121. Klinken, J. van, van Dongen, R.H.: Catalyst dilution for improved performance of laboratory trickle-flow reactors. Chem. Eng. Sci. 35, 59–66 (1980)Google Scholar
  122. Kolb, W.B., Melli, T.R., Desantos, J.M., Scriven, L.E.: Cocurrent downflow in packed-beds – flow regimes and their acoustic signatures. Ind. Eng. Chem. Res. 29, 2380–2389 (1990)Google Scholar
  123. Korsten, H., Hoffmann, U.: Three-phase reactor model for hydrotreating in pilot trickle-bed reactors. AIChE J. 42, 1350–1360 (1996)Google Scholar
  124. Kulkarni, R.R., Wood, J., Winterbottom, J.M., Stitt, E.H.: Effect of fines and porous catalyst on hydrodynamics of trickle bed reactors. Ind. Eng. Chem. Res. 44, 9497–9501 (2005)Google Scholar
  125. Kundu, A., Nigam, K.D.P., Verma, R.P.: Catalyst wetting characteristics in trickle-bed reactors. AIChE J. 49, 2253–2263 (2003)Google Scholar
  126. Kundu, A., Saroha, A.K., Nigam, K.D.P.: Liquid distribution studies in trickle-bed reactors. Chem. Eng. Sci. 56, 5963–5967 (2001)Google Scholar
  127. Kunii, D., Suzuki, M.: Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass Transf. 10, 845–852 (1967)Google Scholar
  128. Kunzle, S., Soler, J.W., Baiker, A.: Continuous enantioselective hydrogenation in fixed-bed reactor: towards process intensification. Catal. Today 79, 503–509 (2003)Google Scholar
  129. Lamine, A.S., Gerth, L., LeGall, H., Wild, G.: Heat transfer in a packed bed reactor with cocurrent downflow of a gas and a liquid. Chem. Eng. Sci. 51, 3813–3827 (1996)Google Scholar
  130. Lämmermann, M., Horak, G., Schwieger, W., Freund, H.: Periodic open cellular structures (POCS) for intensification of multiphase reactors: liquid holdup and two-phase pressure drop. Chem. Eng. Process. 126, 178–189 (2018)Google Scholar
  131. Lange, R., Hanika, J., Stradiotto, D., Hudgins, R.R., Silveston, P.L.: Investigations of periodically operated trickle-bed reactors. Chem. Eng. Sci. 49, 5615–5621 (1994)Google Scholar
  132. Lange, R., Schubert, M., Dietrich, W., Grünewald, M.: Unsteady-state operation of trickle-bed reactors. Chem. Eng. Sci. 59, 5355–5361 (2004)Google Scholar
  133. Lappalainen, K., Manninen, M., Alopaeus, V.: CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chem. Eng. Sci. 64, 207–218 (2009)Google Scholar
  134. Larachi, F., Belfares, L., Grandjean, B.P.A.: Prediction of liquid-solid wetting efficiency in trickle flow reactors. Int. Commun. Heat Mass Transf. 28, 595–603 (2001)Google Scholar
  135. Larachi, F., Belfares, L., Iliuta, I., Grandjean, B.P.A.: Heat and mass transfer in cocurrent gas-liquid packed beds. Analysis, recommendations, and new correlations. Ind. Eng. Chem. Res. 42, 222–242 (2003)Google Scholar
  136. Larachi, F., Cassanello, M., Laurent, A.: Gas-liquid interfacial mass transfer in trickle-bed reactors at elevated pressures. Ind. Eng. Chem. Res. 37, 718–733 (1998)Google Scholar
  137. Larachi, F., Iliuta, I., Chen, M., Grandjean, B.P.A.: Onset of pulsing in trickle beds: evaluation of current tools and state-of-the-art correlation. Can. J. Chem. Eng. 77, 751–758 (1999)Google Scholar
  138. Larachi, F., Laurent, A., Midoux, N., Wild, G.: Experimental study of a trickle-bed reactor operating at high-pressure – two-phase pressure drop and liquid saturation. Chem. Eng. Sci. 46, 1233–1246 (1991)Google Scholar
  139. Larachi, F., Laurent, A., Wild, G., Midoux, N.: Effect of pressure on trickle-to-pulse transition in catalytic trickle-bed reactors. Can. J. Chem. Eng. 71, 319–321 (1993)Google Scholar
  140. Latifi, M.A., Rode, S., Midoux, N., Storck, A.: The use of microelectrodes for the determination of flow regimes in a trickle-bed reactor. Chem. Eng. Sci. 47, 1955–1961 (1992)Google Scholar
  141. Lazzaroni, C.L., Keselman, H.R., Figoli, N.S.: Trickle bed reactors – multiplicity of hydrodynamic states – relation between the pressure-drop and the liquid holdup. Ind. Eng. Chem. Res. 28, 119–121 (1989)Google Scholar
  142. Leung, P.C., Recasens, F., Smith, J.M.: Hydration of isobutene in a trickle-bed reactor – wetting efficiency and mass-transfer. AIChE J. 33, 996–1007 (1987)Google Scholar
  143. Levec, J., Smith, J.M.: Oxidation of acetic-acid solutions in a trickle-bed reactor. AIChE J. 22, 159–168 (1976)Google Scholar
  144. Li, Y.X., Cheng, Z.M., Liu, L.H., Yuan, W.K.: Catalytic oxidation of dilute SO2 over activated carbon coupled with partial liquid phase vaporization. Chem. Eng. Sci. 54, 1571–1576 (1999)Google Scholar
  145. Liu, G., Mi, Z., Wang, L., Zhang, X., Zhang, S.: Hydrogenation of dicyclopentadiene into endo-tetrahydrodicyclopentadiene in trickle-bed reactor: experiments and modeling. Ind. Eng. Chem. Res. 45, 8807–8814 (2006)Google Scholar
  146. Liu, G.Z., Duan, Y., Wang, Y.Q., Wang, L., Mi, Z.T.: Periodically operated trickle-bed reactor for EAQs hydrogenation: experiments and modeling. Chem. Eng. Sci. 60, 6270–6278 (2005)Google Scholar
  147. Liu, G.Z., Lan, J.A., Cao, Y.B., Huang, Z.B., Cheng, Z.M., Mi, Z.T.: New insights into transient behaviors of local liquid-holdup in periodically operated trickle-bed reactors using electrical capacitance tomography (ECT). Chem. Eng. Sci. 64, 3329–3343 (2009)Google Scholar
  148. Llano, J.J., Rosal, R., Sastre, H., Diez, F.V.: Determination of wetting efficiency in trickle-bed reactors by a reaction method. Ind. Eng. Chem. Res. 36, 2616–2625 (1997)Google Scholar
  149. Lopes, R.J.G., Quinta-Ferreira, R.M.: Trickle-bed CFD studies in the catalytic wet oxidation of phenolic acids. Chem. Eng. Sci. 62, 7045–7052 (2007)Google Scholar
  150. Lopes, R.J.G., Quinta-Ferreira, R.M.: Volume-of-Fluid-based model for multiphase flow in high-pressure trickle-bed reactor: optimization of numerical parameters. AIChE J. 55, 2920–2933 (2009a)Google Scholar
  151. Lopes, R.J.G., Quinta-Ferreira, R.M.: CFD modelling of multiphase flow distribution in trickle beds. Chem. Eng. J. 147, 342–355 (2009b)Google Scholar
  152. Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD-VOF method for trickle-bed reactor modeling in the catalytic wet oxidation of phenolic wastewaters. Ind. Eng. Chem. Res. 49, 2638–2648 (2010a)Google Scholar
  153. Lopes, R.J.G., Quinta-Ferreira, R.M.: Hydrodynamic simulation of pulsing-flow regime in high-pressure trickle-bed reactors. Ind. End. Chem. Res. 49, 1105–1112 (2010b)Google Scholar
  154. Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD Euler-Euler method for trickle-bed reactor modelling in the catalytic wet oxidation of phenolic wastewaters. Chem. Eng. J. 160, 293–301 (2010c)Google Scholar
  155. Maiti, R.N., Nigam, K.D.P.: Gas-liquid distributors for trickle-bed reactors: a review. Ind. Eng. Chem. Res. 46, 6164–6182 (2007)Google Scholar
  156. Marcandelli, C., Wild, G., Lamine, A.S., Bernard, J.R.: Measurement of local particle–fluid heat transfer coefficient in trickle-bed reactors. Chem. Eng. Sci. 54, 4997–5002 (1999)Google Scholar
  157. Mariani, N.J., Martinez, O.M., Barreto, G.F.: Evaluation of heat transfer parameters in packed beds with cocurrent downflow of liquid and gas. Chem. Eng. Sci. 56, 5995–6001 (2001)Google Scholar
  158. Martin, H.: Low Péclet number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978)Google Scholar
  159. Mary, G., Chaouki, J., Luck, F.: Trickle-bed laboratory reactors for kinetic studies. Int. J. Chem. React. Eng. 7, 1542–1580 (2009)Google Scholar
  160. Matsuura, A., Hitaka, Y., Akehata, T., Shirai, T.: Apparent wall heat transfer coefficient in packed beds with downward cocurrent gas-liquid flow. Heat Transfer Jpn. Res. 8, 53–60 (1979)Google Scholar
  161. Maugans, C.B., Akgerman, A.: Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst. Water Res. 37, 319–328 (2002)Google Scholar
  162. Mears, D.E.: The role of axial dispersion in trickle-flow laboratory reactors. Chem. Eng. Sci. 26, 1361–1366 (1971a)Google Scholar
  163. Mears, D.E.: Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 20, 127–131 (1971b)Google Scholar
  164. Mears, D.E.: Role of liquid holdup and effective wetting in performance of trickle-bed reactors. Adv. Chem. Ser. 133, 218–227 (1974)Google Scholar
  165. Mears, D.E.: On criteria for axial dispersion in nonisothermal packed-bed catalytic reactors. Ind. Eng. Chem. Fundam. 15, 20–23 (1976)Google Scholar
  166. Mederos, F.S., Elizalde, I., Ancheyta, J.: Steady-state and dynamic reactor models for hydrotreatment of oil fractions: a review. Catal. Rev. Sci. Eng. 51, 485–607 (2009)Google Scholar
  167. Merchan, A., Emig, G., Hofmann, H., Chaudhari, R.V.: Zur Frage des Katalysator-Wirkungsgrades bei Folge-Reaktionen in Mehrphasensystemen. Chem. Ing. Tech. 58, 50–53 (1986)Google Scholar
  168. Merwe, W. van der, Nicol, W.: Characterization of multiple flow morphologies within the trickle flow regime. Ind. Eng. Chem. Res. 44, 9446–9450 (2005)Google Scholar
  169. Merwe, W. van der, Nicol, W.: Trickle flow hydrodynamic multiplicity: experimental observations and pore-scale capillary mechanism. Chem. Eng. Sci. 64, 1267–1284 (2009)Google Scholar
  170. Metaxas, K.C., Papayannakos, N.G.: Kinetics and mass transfer of benzene hydrogenation in a trickle-bed reactor. Ind. Eng. Chem. Res. 45, 7110–7119 (2006)Google Scholar
  171. Meyers, R.A.: Handbook of Petroleum Refining Processes, 3. Aufl. McGraw-Hill Education, New York (2003)Google Scholar
  172. Michell, R.W., Furzer, I.A.: Trickle flow in packed-beds. Trans. Inst. Chem. Eng. 50, 334–342 (1972)Google Scholar
  173. Mogalicherla, A.K., Sharma, G., Kunzru, D.: Estimation of wetting efficiency in trickle-bed reactors for nonlinear kinetics. Ind. Eng. Chem. Res. 48, 1443–1450 (2009)Google Scholar
  174. Morsi, B.I., Laurent, A., Midoux, N., Barthole-Delaunay, G., Storck, A., Charpentier, J.C.: Hydrodynamics and gas-liquid-solid interfacial parameters of co-current downward two-phase flow in trickle-bed reactors. Chem. Eng. Commun. 25, 267–293 (1984)Google Scholar
  175. Mülheims, P., Kraushaar-Czarnetzki, B.: Temperature profiles and process performances of sponge packings as compared to spherical catalysts in the oxidation of o-xylene to phthalic anhydride. Ind. Eng. Chem. Res. 50, 9925–9935 (2011)Google Scholar
  176. Muroyama, K., Hashimoto, K., Tomita, T.: Heat transfer from wall in gas-liquid cocurrent packed beds. Kagaku Kokaku Ronbun. 3, 612–616 (1977)Google Scholar
  177. Nakayama, A., Kuwahara, F.: A general macroscopic turbulence model for flows in packed beds, channels, pipes and rod bundles. J. Fluids Eng. 130, 1–7 (2008)Google Scholar
  178. Nelson, P.A., Galloway, T.R.: Particle-to-fluid heat and mass transfer in dense systems of fine particles. Chem. Eng. Sci. 30, 1–6 (1975)Google Scholar
  179. Ng, K.M.: A model for flow regime transitions in cocurrent downflow trickle-bed reactors. AIChE J. 32, 115–122 (1986)Google Scholar
  180. Nicol, W., Joubert, R.: Liquid-solid mass transfer distributions in trickle bed reactors. Chem. Eng. J. 230, 361–366 (2013)Google Scholar
  181. Nigam, K.D.P., Larachi, F.: Process intensification in trickle-bed reactors. Chem. Eng. Sci. 60, 5880–5894 (2005)Google Scholar
  182. Nishizawa, A., Kitano, T., Ikenaga, N., Miyake, T., Suzuki, T.: Use of trickle bed reactor for Fischer-Tropsch reaction over Co-Mn/oxidized diamond catalyst. J. Jpn. Petrol. Inst. 57, 109–117 (2014)Google Scholar
  183. Perego, C., Peratello, S.: Experimental methods in catalytic kinetics. Catal. Today 52, 133–145 (1999)Google Scholar
  184. Pintar, A., Batista, J.: Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors. Catal. Today 53, 35–50 (1999)Google Scholar
  185. Pintar, A., Batista, J., Tisler, T.: Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts. Appl Catal B. 84, 30–41 (2008)Google Scholar
  186. Pironti, F., Mizrahi, D., Acosta, A., Gonzalez-Mendizabal, D.: Liquid-solid wetting factor in trickle-bed reactors: its determination by a physical method. Chem. Eng. Sci. 54, 3793–3800 (1999)Google Scholar
  187. Rajashekharam, M.V., Jaganathan, R., Chaudhari, R.V.: A trickle-bed reactor model for hydrogenation of 2,4 dinitrotoluene: experimental verification. Chem. Eng. Sci. 53, 787–805 (1998)Google Scholar
  188. Ramachandran, P.A., Dudukovic, M.P., Mills, P.L.: A new model for assessment of external liquid-solid contacting in trickle-bed reactors from tracer response measurements. Chem. Eng. Sci. 41, 855–860 (1986)Google Scholar
  189. Ramachandran, P.A., Smith, J.M.: Effectiveness factors in trickle-bed reactors. AIChE J. 25, 538–542 (1979)Google Scholar
  190. Ramirez, L.F., Escobar, J., Galvan, E., Vaca, H., Murrieta, F.R., Luna, M.R.S.: Evaluation of diluted and undiluted trickle-bed hydrotreating reactor with different catalyst volume. Pet. Sci. Technol. 22, 157–175 (2004)Google Scholar
  191. Ranade, V.V., Chaudhari, R.V., Gunjal, R.R.: Trickle bed reactors. Reactor Engineering and Applications, 1. Aufl. Elsevier, Amsterdam (2011)Google Scholar
  192. Ring, Z.E., Missen, R.W.: Trickle-bed reactors – tracer study of liquid holdup and wetting efficiency at high temperature and pressure. Can. J. Chem. Eng. 69, 1016–1020 (1991)Google Scholar
  193. Saez, A.E., Carbonell, R.G.: Hydrodynamic parameters for gas-liquid cocurrent flow in packed-beds. AIChE J. 31, 52–62 (1985)Google Scholar
  194. Saroha, A.K., Nigam, K.D.P.: Trickle bed reactors. Rev. Chem. Eng. 12, 207–347 (1996)Google Scholar
  195. Sato, Y., Hirose, T., Takahasi, F., Toda, M., Hashiguchi, Y.: Flow pattern and pulsation properties of cuocurrent gas-liquid downflow in packed beds. J. Chem. Eng. Jpn. 6, 315–319 (1973)Google Scholar
  196. Satterfield, C.N.: Trickle-bed reactors. AIChE J. 21, 209–228 (1975)Google Scholar
  197. Satterfield, C.N., Pelossof, A.A., Sherwood, T.K.: Mass transfer limitations in a trickle-bed reactor. AIChE J. 15, 226–234 (1969)Google Scholar
  198. Satterfield, C.N., Way, P.F.: Role of liquid-phase in performance of a trickle bed reactor. AIChE J. 18, 305–311 (1972)Google Scholar
  199. Schubert, M.: Festbettreaktor. DE 10 2018 110 091.4 (2018)Google Scholar
  200. Schubert, M., Bauer, T., Lange, R.: Instationäre Betriebsweise zur Leistungssteigerung technischer Rieselbettreaktoren. Chem. Ing. Technik. 78, 1023–1032 (2006)Google Scholar
  201. Schubert, M., Hamidipour, M., Duchesne, C., Larachi, F.: Hydrodynamics of cocurrent two-phase flows in slanted porous media – modulation of pulse flow via bed obliquity. AIChE J. 56, 3189–3205 (2010a)Google Scholar
  202. Schubert, M., Hessel, G., Zippe, C., Lange, R., Hampel, U.: Liquid flow texture analysis in trickle bed reactors using high-resolution gamma ray tomography. Chem. Eng. J. 140, 332–340 (2008)Google Scholar
  203. Schubert, M., Kryk, H., Hampel, U.: Slow-mode gas/liquid-induced periodic hydrodynamics in trickling packed beds derived from direct measurement of cross-sectional distributed local capacitances. Chem. Eng. Process. 49, 1107–1121 (2010b)Google Scholar
  204. Sederman, A.J., Gladden, L.F.: Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors. Chem. Eng. Sci. 56, 2615–2628 (2001)Google Scholar
  205. Shah, Y.T., Paraskos, J.A.: Criteria for axial dispersion effects in adiabatic trickle bed hydroprocessing reactors. Chem. Eng. Sci. 30, 1169–1176 (1976)Google Scholar
  206. Sicardi, S., Hofmann, H.: Influence of gas velocity and packing geometry on pulsing inception in trickle-bed reactors. Chem. Eng. J. 20, 251–253 (1980)Google Scholar
  207. Sie, S.T.: Scale effects in laboratory and pilot-plant reactors for trickle-flow processes. Rev. Inst. Fr. du Pet. 46, 501–515 (1991)Google Scholar
  208. Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1988)Google Scholar
  209. Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1998)Google Scholar
  210. Silveston, P.L., Hudgins, R.R.: Periodic Operation of Chemical Reactors, 1. Aufl. Elsevier, Butterworth-Heinemann (2013)Google Scholar
  211. Singh, B.K., Jain, E., Buwa, V.V.: Feasibility of electrical resistance tomography for measurements of liquid holdup distribution in a trickle bed reactor. Chem. Eng. J. 358, 564–579 (2019)Google Scholar
  212. Sokolov, V. N., Yablokova, M. A., Krylov, V. N.: 1983, Heat transfer to the wall in a gas-liquid reactor with stationary granular bed. J. Appl. Chem. USSR (Zh. Prikl. Khim.) 56, 554–558 (1983)Google Scholar
  213. Specchia, V., Baldi, G.: Heat-transfer in trickle-bed reactors. Chem. Eng. Commun. 3, 483–499 (1979)Google Scholar
  214. Specchia, V., Baldi, G., Gianetto, A.: Solid-liquid mass transfer in concurrent two-phase flow through packed-beds. Ind. Eng. Chem. Proc. Des. Dev. 17, 362–367 (1978)Google Scholar
  215. Stanek, V., Hanika, J.: The effect of liquid flow distribution on catalytic hydrogenation of cyclohexene in an adiabatic trickle-bed reactor. Chem. Eng. Sci. 37, 1283–1288 (1982)Google Scholar
  216. Storsaeter, S., Borg, O., Blekkan, E.A., Holmen, A.: Study of the effect of water on Fischer-Tropsch synthesis over supported cobalt catalysts. J. Catal. 231, 405–419 (2005)Google Scholar
  217. Stradiotto, D.A., Hudgins, R.R., Silveston, P.L.: Hydrogenation of crotonaldehyde under periodic flow interruption in a trickle bed. Chem. Eng. Sci. 54, 2561–2568 (1999)Google Scholar
  218. Subramanian, K., Winkler, M., Harting, H.-U., Schubert, M.: Prediction of flow patterns of rotating inclined reactors by using a modified permeability approach. Chem. Eng. Technol. 39, 2077–2086 (2016)Google Scholar
  219. Subramanian, K., Zalucky, J., Schubert, M., Lucas, D., Hampel, U.: An Eulerian-Eulerian computational approach for simulating descending gas-liquid flows in reactors with solid foam internals. Chem. Eng. Technol. 40, 2044–2057 (2017)Google Scholar
  220. Tan, C.S., Smith, J.M.: A dynamics method for liquid-particle mass-transfer in trickle beds. AIChE J. 28, 190–195 (1982)Google Scholar
  221. Teruel, F.E., Rizwan-uddina: A new turbulence model for porous media flows. Part I: constitutive equations and model closure. Int. J. Heat Mass Transf. 52, 4264–4272 (2009)Google Scholar
  222. Tukač, V., Šimíčková, M., Chyba, V., Lederer, J., Kolena, J., Hanika, J., Jiřičný, V., Staněk, V., Stavárek, P.: The behavior of pilot trickle-bed reactor under periodic operation. Chem. Eng. Sci. 62, 4891–4895 (2007)Google Scholar
  223. Uraz, C., Atalay, F.S., Atalay, S.: Catalytic hydrogenation of crotonaldehyde in trickle-bed reactor. Chem. Biochem. Eng. Q. 18, 373–383 (2004)Google Scholar
  224. Urrutia, G., Bonelli, P., Cassanello, M.C., Cassanello, A.L., Cukierman, A.L.: On dynamic liquid holdup determination by the drainage method. Chem. Eng. Sci. 51, 3721–3726 (1996)Google Scholar
  225. Urseanu, M.I., Boelhouwer, J.G., Bosman, H.J.M., Schroijen, J.C., Kwant, G.: Estimation of trickle-to-pulse flow regime transition and pressure drop in high-pressure trickle bed reactors with organic liquids. Chem. Eng. J. 111, 5–11 (2005)Google Scholar
  226. Utikar, R.P., Ranade, V.V.: Intensifying multiphase reactions and reactors: strategies and examples. ACS Sustain. Chem. Eng. 5, 3607–3622 (2017)Google Scholar
  227. Wache, W., Datsevich, L.B., Jess, A.: Fischer-tropsch synthesis in a two-phase reactor with presaturation. Oil Gas-Eur. Mag. 33, 35–38 (2007)Google Scholar
  228. Wache, W., Datsevich, L.B., Jess, A., Neumann, G.: Improved deep desulphurisation of middle distillates by a two-phase reactor with pre-saturator. Fuel 85, 1483–1493 (2006)Google Scholar
  229. Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass-transfer coefficients in packed-beds – correlation of Sherwood numbers. Chem. Eng. Sci. 33, 1375–1384 (1978)Google Scholar
  230. Wang, Y., Chen, J., Larachi, F.: Modelling and simulation of trickle-bed reactors using computational fluid dynamics: a state-of-the-art review. Can. J. Chem. Eng. 91, 136–180 (2013)Google Scholar
  231. Wang, Y.F., Mao, Z.S., Chen, J.Y.: The relationship between hysteresis and liquid flow distribution in trickle beds. Chin. J. Chem. Eng. 7, 221–229 (1999)Google Scholar
  232. Weekman, V.W., Myers, J.E.: Heat transfer characteristics of concurrent gas-liquid flow in packed beds. AIChE J. 11, 13–17 (1965)Google Scholar
  233. Westhuizen, I. van der, du Toit, E., Nicol, W.: Trickle flow multiplicity: the influence of the prewetting procedure on flow hysteresis. Chem. Eng. Res. Des. 85, 1604–1610 (2007)Google Scholar
  234. Wild, G., Larachi, F., Charpentier, J.-C.: Heat and mass transfer in gas-liquid-solid fixed bed reactors. In: Quintard, M., Todorovic, M. (Hrsg.) Heat and Mass Transfer in Porous Media, S. 615–632. Elsevier, Amsterdam (1992)Google Scholar
  235. Wörz, N., Arras, J., Claus, P.: Continuous selective hydrogenation of citral in a trickle-bed reactor using ionic liquid modified catalysts. Appl. Catal., A. 391, 319–324 (2011)Google Scholar
  236. Young, L.C., Finlayson, B.A.: Axial dispersion in nonisothermal packed bed chemical reactors. Ind. Eng. Chem. Fundam. 12, 412–422 (1973)Google Scholar
  237. Zalucky, J.: Hydrodynamics and mass transfer performance of solid-foam packed reactors at descending gas-liquid flows. Dissertation. Technische Universität Dresden (2018)Google Scholar
  238. Zalucky, J., Wagner, M., Schubert, M., Lange, R., Hampel, U.: Hydrodynamics of descending gas-liquid flows in solid foams: liquid holdup, multiphase pressure drop and radial dispersion. Chem. Eng. Sci. 168, 480–494 (2017)Google Scholar
  239. Zhukova, T.B., Pisarenko, V.N., Kafarov, V.V.: Modeling and design of industrial reactors with a stationary bed of catalyst and two-phase gas-liquid flow – a review. Int. Chem. Eng. 30, 57–102 (1990)Google Scholar
  240. Zimmerman, S.P., Chu, C.F., Ng, K.M.: Axial and radial dispersion in trickle-bed reactors with trickling gas-liquid downflow. Chem. Eng. Commun. 50, 213–240 (1987)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Experimentelle ThermofluiddynamikHelmholtz-Zentrum Dresden-RossendorfDresdenDeutschland

Personalised recommendations