Advertisement

Titangruppe: Elemente der vierten Nebengruppe

  • Hermann SiciusEmail author
Living reference work entry

Zusammenfassung

In diesem Kapitel werden die Elemente der vierten Nebengruppe des Periodensystems der Elemente mit ihren wichtigsten Verbindungen beschrieben. Vor allem ist Titan Bestandteil vieler Gebrauchsgegenstände des täglichen Bedarfs und in technologischer Hinsicht für die Zukunft unverzichtbar, aber auch Zirconium und Hafnium gehen in viele Anwendungen. Es werden ihre chemischen und physikalischen Eigenschaften, ihr Vorkommen, bedeutsame Herstellverfahren, Anwendungen und Patente aufgeführt.

Literatur

  1. Al-Khatatbeh Y et al (2009) High-pressure behavior of TiO2 as determined by experiment and theory. Phys Rev B 79(13):134114CrossRefGoogle Scholar
  2. Allendorf MD (1999) Proceedings of the symposium on fundamental gas phase and surface chemistry. The Electrochemical Society, Pennington, S 265. ISBN 1-56677-217-6Google Scholar
  3. Alsfasser R, Meyer HJ (2007) Moderne Anorganische Chemie, 2. Aufl. de Gruyter, Berlin. ISBN 978-3-11-017838-8Google Scholar
  4. Alsfasser R et al (2007) Moderne Anorganische Chemie. de Gruyter, Berlin, S 295. ISBN 3-11-019060-5Google Scholar
  5. AE Arkel van , JH de Boer (1924a) Die Trennung von Zirconium und Hafnium durch Kristallisation ihrer Ammoniumdoppelfluoride, Z Anorg Allg Chem, 141, 284Google Scholar
  6. AE Arkel van und JH de Boer (1924b) Die Trennung des Zirconiums von anderen Metallen, einschließlich Hafnium, durch fraktionierte Destillation, Z Anorg Allg Chem, 141, 289Google Scholar
  7. AE Arkel van, J H de Boer (1925) Darstellung von reinem Titanium-, Zirconium-, Hafnium- und Thoriummetall, Z Anorg Allg Chem, 148(1):345–350.  https://doi.org/10.1002/zaac.19251480133
  8. Audi G et al (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128CrossRefGoogle Scholar
  9. Barber RC et al (1993) Discovery of the transfermium elements. Part II: introduction to discovery profiles. Part III: discovery profiles of the transfermium elements. Pure Appl Chem 65:1757–1814CrossRefGoogle Scholar
  10. Bear IJ, Mumme WG (1969) The crystal chemistry of zirconium sulphates. III. The structure of the β-pentahydrate, Zr2(SO4)4(H2O)∗8.2 H2O, and the inter-relationship of the four higher hydrates. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 25:1572–1581Google Scholar
  11. Bedinger GM (2015) Zirconium, Mineral Commodity Summaries. United States Geological Survey, U. S. Department of the Interior, Washington, DC. Zugegriffen am 07.11.2015Google Scholar
  12. Beglov VM et al (1992) Effect of boron and hafnium on the corrosion resistance of high-temperature nickel alloys. Met Sci Heat Treat 34(4):251CrossRefGoogle Scholar
  13. Bemis CE et al (1973) X-Ray identification of element 104. Phys Rev Lett 31(10):647–650CrossRefGoogle Scholar
  14. Benner G, Müller BG (1990) Zur Kenntnis binärer Fluoride des ZrF4-Typs: HfF4 und ThF4. Z Anorg Allg Chem 588:133.  https://doi.org/10.1002/zaac.19905880105CrossRefGoogle Scholar
  15. Bialowons H et al (1995) Titantetrafluorid – Eine überraschend einfache Kolumnarstruktur. Z Anorg Allg Chem 621:1227–1231CrossRefGoogle Scholar
  16. Blachnik R (1998) Taschenbuch für Chemiker und Physiker. Band III: Elemente, anorganische Verbindungen und Materialien, Minerale, 4. Aufl. Springer, Berlin/Heidelberg, S 478/766–770/818–820. ISBN 3-540-60035-3Google Scholar
  17. Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148(1–2):243–258CrossRefGoogle Scholar
  18. Blumenthal G et al (2007) Chemie – Grundwissen für Ingenieure. Springer, Berlin/Heidelberg, S 239. ISBN 978-3-8351-9047-4Google Scholar
  19. Bohr N (1924) The theory of spectra and atomic constitution: three essays. Cambridge University Press, Cambridge, S 114. ISBN 1-4365-0368-4Google Scholar
  20. Böscke TS et al (2011) Ferroelectricity in hafnium oxide thin films. Appl Phys Lett 99(10):102903.  https://doi.org/10.1063/1.3634052CrossRefGoogle Scholar
  21. Bouroushian M (2010) Electrochemistry of metal chalcogenides. Springer, Berlin/Heidelberg. ISBN 978-3-642-03967-6CrossRefGoogle Scholar
  22. Bowman R et al (1983) Electronic structure of zirconium hydride: a proton NMR study. Phys Rev B 27(3):1474–1488.  https://doi.org/10.1103/PhysRevB.27.1474CrossRefGoogle Scholar
  23. Bowman R et al (1985) Effects of thermal treatments on the lattice properties and electronic structure of ZrHx. Phys Rev B 31(9):5604–5615.  https://doi.org/10.1103/PhysRevB.31.5604CrossRefGoogle Scholar
  24. Bradley HB, Dowell LG (1958) Crystallographic Data. 168. Bis(cyclopentadienyl)Zirconium Dichloride. Anal Chem 30(4):548.  https://doi.org/10.1021/ac60136a601CrossRefGoogle Scholar
  25. Brauer G (1975) Handbuch der Präparativen Anorganischen Chemie, Bd I, 3. Aufl. Enke Verlag, Stuttgart, S 259–260. ISBN 3-432-87813-3Google Scholar
  26. Brauer G (1978a) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke Verlag, Stuttgart, S 1333. ISBN 3-432-87813-3Google Scholar
  27. Brauer G (1978b) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke Verlag, Stuttgart, S 1343–1350. ISBN 3-432-87813-3Google Scholar
  28. Brauer G (1978c) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke Verlag, Stuttgart, S 1358–1360. ISBN 3-432-87813-3Google Scholar
  29. Brauer G (1978d) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke Verlag, Stuttgart, S 1366–1371. ISBN 3-432-87813-3Google Scholar
  30. Brauer G (1978e) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke Verlag, Stuttgart, S 1375–1379. ISBN 3-432-87813-3Google Scholar
  31. Brauer G (1978f) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke Verlag, Stuttgart, S 1383–1389. ISBN 3-432-87813-3Google Scholar
  32. Breuer H (2000) dtv-Atlas Chemie, Bd 1, 9. Aufl. dtv-Verlag, München. ISBN 3-423-03217-0Google Scholar
  33. Briehl H (2007) Chemie der Werkstoffe. Springer Science & Business Media, Heidelberg, S 244/253. ISBN 978-3-8351-0223-1Google Scholar
  34. Brinkman H (2013) Coster, Dirk (1889–1950). In: Biografisch Woordenboek van Nederland, Huygens ING, Den Haag, 1989, zuletzt bearbeitet 2013Google Scholar
  35. Brock T et al (2000) Lehrbuch der Lacktechnologie, 2. Aufl. Vincentz Network, Hannover, S 123. ISBN 3-87870-569-7Google Scholar
  36. Buchwald SL et al (1993) Schwartz’s Reagent. Organic Synth 71:77.  https://doi.org/10.15227/orgsyn.071.0077CrossRefGoogle Scholar
  37. Bullis K (2008) Neuverdrahtung der Elektronik. technology review, 8. Mai 2008. Zugegriffen am 24.10.2015Google Scholar
  38. Cacuci DG (2010) Handbook of nuclear engineering. Vol. 5: fuel cycles, decommissioning, waste disposal and safeguards. Springer, New York, S 2961. ISBN 0387981306CrossRefGoogle Scholar
  39. Campbell J (1999) Rutherford. Scientist Supreme. AAS Publications, Christchurch. ISBN 0-473-05700-XGoogle Scholar
  40. Çamurlu HE, Maglia F (2009) Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. J Eur Ceram Soc 29:1501–1506.  https://doi.org/10.1016/j.jeurceramsoc.2008.09.006CrossRefGoogle Scholar
  41. Cardarelli F (2008) Materials handbook: a concise desktop reference. Springer, New York, S 617–619. ISBN 978-1-84628-669-8Google Scholar
  42. Carrillo CW, Lundström T (1979) New phases in the Ti-P and Ti-Cu-P systems. Acta Chem Scand Ser A 33:401–402CrossRefGoogle Scholar
  43. Carrillo CW, Lundström T (1980) Crystal structure refinement of Ti5P3. Acta Chem Scand Ser A 34:415–419CrossRefGoogle Scholar
  44. Ceresana (2013) Marktstudie Titan-IV-oxid. Ceresana Technologiezentrum, KonstanzGoogle Scholar
  45. Chamberlain AL et al (2009) Reactive hot pressing of zirconium diboride. J Eur Ceram Soc 29:3401–3408.  https://doi.org/10.1016/j.jeurceramsoc.2009.07.006CrossRefGoogle Scholar
  46. Chen LJ (2004) Silicide technology for integrated circuits. IET Digital Library, London, S 49. ISBN 0-86341-352-8CrossRefGoogle Scholar
  47. Chianelli RR, Dines MB (1975) Reaction of n-Butyllithium with transition metal trichalcogenides. Inorg Chem 14(10):2417–2421Google Scholar
  48. Clark RJH et al (2013) The chemistry of titanium, zirconium and hafnium, Pergamon texts in inorganic chemistry. Elsevier, Amsterdam, S 436. ISBN 978-1-4831-5921-8Google Scholar
  49. Cockroft JD (1967) George de Hevesy 1885–1966. Biograph Mem Fell Royal Soc 13:126–166Google Scholar
  50. Conroy LE (1970) Group IV sulfides. Inorg Synth 12:158.  https://doi.org/10.1002/9780470132432.ch28CrossRefGoogle Scholar
  51. Coster D, Hevesy G (1923) On the missing element of atomic number 72. Nature 111(2777):79CrossRefGoogle Scholar
  52. Cunningham D (2014) A first-principles examination of Dopants in HfO2. Honors Scholar Theses, Paper 359. University of Connecticut, Hartford, S 25Google Scholar
  53. Davidovich RL et al (2013) Crystal structure of monoclinic modifications of zirconium and hafnium tetrafluoride trihydrates. J Struct Chem 54:541–546CrossRefGoogle Scholar
  54. de Hevesy G (1923) Über die Auffindung des Hafniums und den gegenwärtigen Stand unserer Kenntnisse von diesem Element. Ber Dt Chem Ges 56(7):1503Google Scholar
  55. de Hevesy G (1925) The discovery and properties of hafnium. Chem Rev 2(1):1–41Google Scholar
  56. Deer WA et al (1982) The rock-forming minerals, volume 1 A: orthosilicates. Longman Group Ltd., Pearson/London, S 418–442. ISBN 0-582-46526-5Google Scholar
  57. Deniz D (2008) Texture evolution in metal nitride (aluminum nitride, titanium nitride, hafnium nitride) thin films prepared by off-normal incidence reactive magnetron sputtering. ProQuest, Ann Arbor, S 6. ISBN 9781109037821Google Scholar
  58. Der Standard (2011) NASA-Daten weisen auf reiche Titan-Vorkommen auf dem Mond hin, Wien. http://derstandpard.at/1317019743040/Rohstoffquelle-NASA-Daten-weisen-auf-reiche-Titan-Vorkommen-auf-dem-Mond-hin . Zugegriffen am 09.10.2011
  59. Devi A (2007) Hafniumoxid bringt den Durchbruch. AG der RUB entwickelt neuartige Verbindung. Preis im Erfinderwettbewerb, Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie II der Ruhr-Universität BochumGoogle Scholar
  60. Die Welt (2011) Forscher preisen den Mond als Rohstofflieferanten, Hamburg. http://www.welt.de/wissenschaft/weltraum/article13647963/Forscher-preisen-den-Mond-als-Rohstofflieferanten.html. Zugegriffen am 10.10.2011
  61. Dubrovinsky LS et al (2001) Materials science: the hardest known oxide. Nature 410(6829):653–654CrossRefPubMedPubMedCentralGoogle Scholar
  62. Dzivenko D (2009) High-pressure synthesis, structure and properties of cubic zirconium(IV)- and hafnium(IV) nitrides. Dissertation, Technische Universität DarmstadtGoogle Scholar
  63. Ebbinghaus T (2002) Kombinierter biologisch-photokatalytischer Abbau von umweltrelevanten Stickstoffverbindungen zur Reinigung von landwirtschaftlichen Abwässern mit bewachsenen Pflanzen-filtern und TiO2/UV. Dissertation, Universität DortmundGoogle Scholar
  64. Eberly KC (1963) Zirconium(IV) Iodide. Inorg Synth 7:52–54.  https://doi.org/10.1002/9780470132388.ch13CrossRefGoogle Scholar
  65. Ehrlich P et al (1964) Über Zirconium(III)-fluorid. Versuche zur Darstellung von Thorium(III)-fluorid. Z Anorg Allg Chem 333:209–215CrossRefGoogle Scholar
  66. Ellison P et al (2010) New superheavy element isotopes:242Pu(48Ca,5n)285114. Phys Rev Lett 105(18):182701CrossRefPubMedPubMedCentralGoogle Scholar
  67. Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-Depleted region. J Am Ceram Soc 90(1):143–148.  https://doi.org/10.1111/j.1551-2916.2006.01329.xCrossRefGoogle Scholar
  68. Flerov GN et al (1964) Synthesis and physical identification of the isotope of element 104 with mass number 260. Phys Lett 13:73–75CrossRefGoogle Scholar
  69. Forsberg CW et al (2011) Water reactor. In: Nuclear hydrogen production handbook. CRC Press, Boca Raton, S 192. ISBN 978-1-4398-1084-2Google Scholar
  70. Friese KH, Grünwald W (1995) Sensor element for limit sensors for determining the lambda value of gaseous mixtures. (EP 0386006, Robert Bosch GmbH, Stuttgart, veröffentlicht 12. Juli 1995)Google Scholar
  71. Gambogi J (2011) Mineral commodity summaries 2011: Zirconium and Hafnium, United States Geological Survey. U. S. Department of the Interior, Washington, DC, S 190–191Google Scholar
  72. Gemmi M et al (2003) Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Cryst A 59:117–126.  https://doi.org/10.1107/S0108767302022559CrossRefGoogle Scholar
  73. Ghiorso A et al (1969) Positive identification of two alpha-particle-emitting isotopes of element 104. Phys Rev Lett 22:1317–1320.  https://doi.org/10.1103/PhysRevLett.22.1317CrossRefGoogle Scholar
  74. Ghiorso A et al (1970) 261Rf; new isotope of element 104. Phys Lett, B 32(2):95–98CrossRefGoogle Scholar
  75. Ghiorso A et al (1993) Responses on ‚Discovery of the transfermium elements‘ by Lawrence Berkeley Laboratory, California; Joint Institute for Nuclear Research, Dubna; and Gesellschaft für Schwerionenforschung, Darmstadt followed by reply to responses by the Transfermium Working Group. Pure Appl Chem 65(8):1815–1824CrossRefGoogle Scholar
  76. Gilbert LH, Barr MM (1955) Preliminary investigation of Hafnium metal by the Kroll process. J Electrochem Soc 102(5):243CrossRefGoogle Scholar
  77. Gonzalez F et al (1924) Über das Atomgewicht des Zirconiums. Z Allg Anorg Chem 139:293–309CrossRefGoogle Scholar
  78. Grätzel M, Rotzinger FP (1985) The influence of the crystal lattice structure on the conduction band energy of oxides of titanium(IV). Chem Phys Lett 118(5):474–477CrossRefGoogle Scholar
  79. Greenwood NN, Earnshaw A (1988) Chemie der Elemente, 1. Aufl. Wiley VCH, Weinheim, S 1231. ISBN 3-527-26169-9Google Scholar
  80. Griffith RF (1952) Zirconium and Hafnium, Minerals Yearbook Metals and Minerals (except fuels). The first production plants Bureau of Mines, Albany, S 1162–1171Google Scholar
  81. Gylfe JD (1954) Fuel moderator element for a nuclear reactor, and method of making. (US 3145150, U. S. Government, veröffentlicht 18. August 1954)Google Scholar
  82. Hagen AP (2009) Inorganic reactions and methods, the formation of bonds to halogens. Wiley, New York, S 288. ISBN 0-470-14539-0Google Scholar
  83. Halter U et al (1986) Hydrogen absorption in Ti3P. J Less Comm Met 118:343–348CrossRefGoogle Scholar
  84. Hasaninejad A et al (2012) Zirconium nitrate: a reusable water tolerant Lewis acid catalyst for the synthesis of N-substituted pyrroles in aqueous media. RSC Adv 2(15):6174.  https://doi.org/10.1039/C2RA20294HCrossRefGoogle Scholar
  85. Hatta K et al (1996) Floating zone growth and characterization of aluminum-doped rutile single crystals. J Cryst Growth 163:279–284CrossRefGoogle Scholar
  86. Hedrick JB (2001) Zirconium and Hafnium, United States Geological Survey. U. S. Department of the Interior, Washington, DCGoogle Scholar
  87. Heilbron JL (1966) The work of H. G. J. Moseley. Isis 57(3):336CrossRefGoogle Scholar
  88. Heimann PM (1967) Moseley and celtium: the search for a missing element. Ann Sci 23(4):249CrossRefGoogle Scholar
  89. Hering E (2012) Sensoren in Wissenschaft und Technik. Vieweg und Teubner Verlag, Wiesbaden, S 107. ISBN 978-3-834-88635-4CrossRefGoogle Scholar
  90. Heßberger FP et al (1997) Spontaneous fission and alpha-decay properties of neutron deficient isotopes 257–253104 and 258106. Z Phys A 359(4):415Google Scholar
  91. Heßberger FP et al (2001) Decay properties of neutron-deficient isotopes 256,257Db,255Rf, 252,253Lr. Eur Phys J A 12(1):57–67CrossRefGoogle Scholar
  92. Hippel AR von (1950) Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev Mod Phys 22:221–237Google Scholar
  93. Hodul DT, Stacy A (1984) Anomalies in the properties of Hf(S2−xTex)1-y and Hf(Se2−xTex)1-y near the metal-insulator transition. J Solid State Chem 54(3):438.  https://doi.org/10.1016/0022-4596(84)90176-2CrossRefGoogle Scholar
  94. Hofmann S (2009) The euroschool lectures on physics with exotic beams, Vol. III Lecture notes in physics. Springer, Berlin, S 203–252CrossRefGoogle Scholar
  95. Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. De Gruyter Verlag, Berlin, S 1525. /1528/1533. ISBN 978-3-11-017770-1CrossRefGoogle Scholar
  96. Housecroft CE (2005) Inorganic chemistry. Pearson Education, Upper Saddle River, S 652. ISBN 0130399132Google Scholar
  97. Hund-Rinke K et al (2013) Biological efficiency measurements for photocatalysts. Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie, SchmallenbergGoogle Scholar
  98. Hutchings I, Shipway P (2017) Tribology friction and wear of engineering materials. Butterworth-Heinemann, Oxford, S 171. ISBN 978-0-08-100951-2Google Scholar
  99. Irani KS, Gingerich KA (1963a) Structural transformation of zirconium phosphide. J Phys Chem Solid 24(10):1153–1158.  https://doi.org/10.1016/0022-3697(63)90231-2CrossRefGoogle Scholar
  100. Irani KS, Gingerich KA (1963b) Structural transformation of zirconium phosphide. J Phys Chem Solid 24(10):1153–1158.  https://doi.org/10.1016/0022-3697(63)90231-2CrossRefGoogle Scholar
  101. IUPAC Commission (1997) Names and symbols of transfermium elements (IUPAC Recommendations. Pure Appl Chem 69(12):2471–2474CrossRefGoogle Scholar
  102. Jander G, Blasius E (1990) Einführung in das anorganisch chemische Praktikum (Qualitative Analyse), 13. Aufl. S. Hirzel-Verlag, Stuttgart, S 130Google Scholar
  103. Jayaraman S et al (2005) Hafnium diboride thin films by chemical vapor deposition from a single source precursor. J Vac Sci Tech A: Vac, Surf Films 23:1619.  https://doi.org/10.1116/1.2049307CrossRefGoogle Scholar
  104. Johnson BFG (1972) Inorganic chemistry of the transition elements. Royal Society of Chemistry, London, S 22. ISBN 978-0-85186-500-3CrossRefGoogle Scholar
  105. Jones MN et al (2005) Dielectric constant and current transport for HfO2 thin films on ITO. Appl Phys A 81:285–288.  https://doi.org/10.1007/s00339-005-3208-2CrossRefGoogle Scholar
  106. Kaji M, Mendeleev’s DI (2002) Concept of chemical elements and the principles of chemistry. Bull Hist Chem 27:4Google Scholar
  107. Kalpakjian S et al (2011) Werkstofftechnik. Pearson GmbH, Hallbergmoos, S 634. ISBN 9783868940060Google Scholar
  108. Kaminskii BT et al (1973) Manufacture of zirconium and hafnium sulfide powders. Sov Powd Metall Met Ceram 12(7):521–524.  https://doi.org/10.1007/BF00796747CrossRefGoogle Scholar
  109. Kanazawa T et al (2016) Few-layer HfS2 transistors. Sci Rep 6:22277.  https://doi.org/10.1038/srep22277CrossRefPubMedPubMedCentralGoogle Scholar
  110. Karuna PRP et al (2010) Microstructure and phase composition of composite coatings formed by plasma spraying of ZrO2 and B4C powders. J Therm Spray Tech 19:816–823.  https://doi.org/10.1007/s11666-010-9479-yCrossRefGoogle Scholar
  111. Kaur H (2017) High yield synthesis and chemical exfoliation of two-dimensional layered hafnium disulphide. Nano Res arXiv:1611.00895.  https://doi.org/10.1007/s12274-017-1636-xCrossRefGoogle Scholar
  112. Kieffer R, Schwarzkopf P (2013) Hartstoffe und Hartmetalle. Springer, Berlin/Heidelberg, S 259. ISBN 978-3-7091-3901-1Google Scholar
  113. Kienel G (1997) Vakuumbeschichtung: Band 5: Anwendungen. Springer, Heidelberg, S 46. ISBN 978-3-6425-8008-6Google Scholar
  114. Klare M (1999) Möglichkeiten des photokatalytischen Abbaus umweltrelevanter Stickstoffverbindungen unter Einsatz von TiO2. Dissertation, Universität DortmundGoogle Scholar
  115. Kojić-Prodić B et al (1984) Structure of aquatetrafluorozirconium(IV). Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 37:1963–1965CrossRefGoogle Scholar
  116. Kollenberg W (2004) Technische Keramik Grundlagen, Werkstoffe, Verfahrenstechnik. Vulkan-Verlag, Essen, S 339. ISBN 978-3-8027-2927-9Google Scholar
  117. Kratz JV (2003) Critical evaluation of the chemical properties of the transactinide elements (IUPAC Technical Report). Pure Appl Chem 75(1):103CrossRefGoogle Scholar
  118. Kratz JV et al (2003) An EC-branch in the decay of 27-s263Db: evidence for the new isotope263Rf. Radiochim Acta 91(1):59–62CrossRefGoogle Scholar
  119. Krebs B et al (1979) Kristallstruktur von Zirconiumtetrajodid ZrI4: ein neuer AB4-Strukturtyp. Acta Crystallogr B 35:274–278.  https://doi.org/10.1107/S0567740879003344CrossRefGoogle Scholar
  120. Krebs B, Sinram D (1980) Hafniumtetrajodid HfI4: Struktur und Eigenschaften. Ein neuer AB4-strukturtyp. J Less Comm Met 76:7.  https://doi.org/10.1016/0022-5088(80)90005-3CrossRefGoogle Scholar
  121. Kroll W (1940) Method for manufacturing titanium and alloys thereof. US 2205854, veröffentlicht 25. Juni 1940Google Scholar
  122. Kroll P (2003) Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. Phys Rev Lett 90:125501CrossRefPubMedPubMedCentralGoogle Scholar
  123. Lamas DG, de Walsöe Reca NE (2000) X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria-doped zirconia powders. J Mater Sci 35:5563–5567CrossRefGoogle Scholar
  124. Lane MR et al (1996) Spontaneous fission properties of 104262Rf. Phys Rev C 53(6):2893–2899CrossRefGoogle Scholar
  125. Larsen E et al (1943) Concentration of hafnium. Preparation of hafnium-free Zirconia. Ind Eng Chem Anal 15(8):512CrossRefGoogle Scholar
  126. Latscha H-P, Mutz M (2011) Chemie Der Elemente: Chemie. Springer, Heidelberg, S 211/394. ISBN 3642169147CrossRefGoogle Scholar
  127. Lawson JW et al (2011) Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations. J Appl Phys 110:083507.  https://doi.org/10.1063/1.3647754CrossRefGoogle Scholar
  128. Lee OI (1928) The mineralogy of hafnium. Chem Rev 5:17CrossRefGoogle Scholar
  129. Legein C et al (2006) 19F high magnetic field NMR study of beta-ZrF4 and CeF4: from spectra reconstruction to correlation between fluorine sites and 19F isotopic chemical shifts. Inorg Chem 45(26):10636–10641CrossRefPubMedPubMedCentralGoogle Scholar
  130. Lide DR (2010) Geophysics, astronomy, and acoustics; Abundance of elements in the earth’s crust and in the sea. In: CRC handbook of chemistry and physics, 90. Aufl. CRC Press, Boca Raton, S 14–18Google Scholar
  131. Lindner M (1997) Optimierung der photokatalytischen Wasserreinigung mit Titandioxid, Festkörper- und Oberflächenstruktur des Photokatalysators. Dissertation, Universität HannoverGoogle Scholar
  132. Liss KD et al (2003) High energy X-rays: a tool for advanced bulk investigations in materials science and physics. Text Microstruct 35(3/4):219–252.  https://doi.org/10.1080/07303300310001634952CrossRefGoogle Scholar
  133. Loehman RE et al (2006) Ultrahigh-temperature ceramics for hypersonic vehicle applications. Sandia report 2006–2925, Sandia National Laboratories, Albuquerque/LivermoreGoogle Scholar
  134. Machida H, Fukuda T (1991) Difficulties encountered during the Czochralski growth of TiO2 single crystals. J Cryst Growth 112:835–837CrossRefGoogle Scholar
  135. Magnuson M (2017) Bonding structures of ZrHx thin films by X-ray spectroscopy. J Phys Chem C 121:25750.  https://doi.org/10.1021/acs.jpcc.7b03223CrossRefGoogle Scholar
  136. Magnuson M et al (2018) Chemical bonding in epitaxial ZrB2 studied by X-ray spectroscopy. Thin Solid Films 649:89–96.  https://doi.org/10.1016/j.tsf.2018.01.021CrossRefGoogle Scholar
  137. Majewski T (2002) Spurenbestimmung metallischer Verunreinigungen in γ-TiAl und den hochreinen Ausgangsmaterialien Al und Ti mittels ICP-Massenspektrometrie. Dissertation, Universität Hannover, S 5, DNB 965453219/34Google Scholar
  138. Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer, Heidelberg, S 468/470. ISBN 978-3-540-30437-1CrossRefGoogle Scholar
  139. Martin B (1994) Herstellung und Charakterisierung gesputterter TiN-Schichten auf Kupferwerkstoffen. Shaker Verlag, Herzogenrath. ISBN 3-86111-950-1Google Scholar
  140. Martin PM et al (2002) Investigation of sputtered HfF4 films and application to interference filters for thermophotovoltaics. Thin Solid Films 420–421:8.  https://doi.org/10.1016/S0040-6090(02)00652-1CrossRefGoogle Scholar
  141. Maslenkov SB et al (1980) Effect of hafnium on the structure and properties of nickel alloys. Met Sci Heat Treat 22(4):283CrossRefGoogle Scholar
  142. Massie M, Dewan LC (2013) Nuclear reactors and related methods and apparatus. US 20130083878 A1, U. S. Government, veröffentlicht 4. April 2013Google Scholar
  143. McCauley JW et al (2012) Ceramic armor materials by design. Wiley, New York, S 633. ISBN 1-118-38110-6Google Scholar
  144. McNallan M (2000) High temperature corrosion and materials chemistry, proceedings of the Per Kofstad memorial symposium. The Electrochemical Society, Pennington, S 490. ISBN 978-1-56677-261-7Google Scholar
  145. Medvedev SA et al (2016) Pressure-driven superconductivity in the transition-metal pentatelluride HfTe5. Phys Rev B 94:054517.  https://doi.org/10.1103/PhysRevB.94.054517CrossRefGoogle Scholar
  146. Mel’nikov VP (1982) Some details in the prehistory of the discovery of element 72. Centaurus 26(3):317CrossRefGoogle Scholar
  147. Middleburgh S et al (2011) Atomic scale modeling of point defects in Zirconium Diboride. J Am Ceram Soc 94(7):2225–2229.  https://doi.org/10.1111/j.1551-2916.2010.04360.xCrossRefGoogle Scholar
  148. Mittmann T et al (2017) Optimizing process conditions for improved Hf1−xZrxO2 ferroelectric capacitor performance. Microelectr Eng 178:48–51.  https://doi.org/10.1016/j.mee.2017.04.031CrossRefGoogle Scholar
  149. Mompean F et al (2005) Chemical thermodynamics of zirconium. Gulf Professional Publishing, Elsevier, Amsterdam, S 144. ISBN 0080457533Google Scholar
  150. Morozov IV et al (2005) Synthesis and crystal structures of zirconium(IV) nitrate complexes (NO2)[Zr(NO3)3(H2O)3]2(NO3)3, Cs[Zr(NO3)5], and (NH4)[Zr(NO3)5](HNO3). Russ Chem Bull 54(1):93–98.  https://doi.org/10.1007/s11172-005-0222-7CrossRefGoogle Scholar
  151. Müller J et al (2011a) Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl Phys Lett 99(11):112901.  https://doi.org/10.1063/1.3636417CrossRefGoogle Scholar
  152. Müller J et al (2011b) Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys 110(11):114113.  https://doi.org/10.1063/1.3667205CrossRefGoogle Scholar
  153. Müller J et al (2012) Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. 2012 Symposium on VLSI Technology, Honolulu 15. Juni 2012, S 25–26.  https://doi.org/10.1109/VLSIT.2012.6242443
  154. Nagame Y et al (2005) Chemical studies on rutherfordium (Rf) at JAERI. Radiochim Acta 93:519CrossRefGoogle Scholar
  155. Nichols MC et al (2001) Osbornite, handbook of mineralogy. Mineralogical Society of America, ChantillyGoogle Scholar
  156. Niedźwiedź K et al (1993) 91Zr NMR in non-stoichiometric zirconium hydrides, ZrHx (1,55 ≤ x ≤ 2). J Alloys Compd 194(1):47–51.  https://doi.org/10.1016/0925-8388(93)90643-2CrossRefGoogle Scholar
  157. Niewa R, Jacobs H (1995) Crystal structure of hafnium(IV) chloride, HfCl4, Z. Krist. Cryst Mat 210(9):687–687.  https://doi.org/10.1524/zkri.1995.210.9.687CrossRefGoogle Scholar
  158. Nikiforov GB et al (2014) A survey of titanium fluoride complexes, their preparation, reactivity, and applications. Coord Chem Rev 258–259:16–57.  https://doi.org/10.1016/j.ccr.2013.09.002CrossRefGoogle Scholar
  159. Ninov V et al (1999) Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb. Phys Rev Lett 83(6):1104–1107CrossRefGoogle Scholar
  160. Nishio-Hamane D (2010) The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys Chem Miner 37(3):129–136CrossRefGoogle Scholar
  161. Nishiyama K et al (2009) Preparation of ultrafine boride powders by metallothermic reduction method. J Phys, Conf Ser 176:012043Google Scholar
  162. Nowotny H, Pesl J (1951) Untersuchungen im System Titan-Antimon. Monatsh Chem 82(2):336–343CrossRefGoogle Scholar
  163. Ogale SB (2005) Thin films and heterostructures for oxide electronics. Springer, Berlin/Heidelberg, S 38. ISBN 0-387-25802-7Google Scholar
  164. Oganessian YT et al (2007) Synthesis of the isotope 282113Uut in the Np237 + Ca48 fusion reaction. Phys Rev C 76(1):011601Google Scholar
  165. Oganessian YT et al (2009) Superheavy elements in D I Mendeleev’s periodic table. Russ Chem Rev 78(12):1077CrossRefGoogle Scholar
  166. Oganessian YT et al (2015) Experiments on the synthesis of superheavy nuclei 284Fl and 285Fl in the 239,240Pu +48Ca reactions. Phys Rev C 92(3)Google Scholar
  167. Östlin A, Vitos L (2011) First-principles calculation of the structural stability of 6d transition metals. Phys Rev B 84(11):113104CrossRefGoogle Scholar
  168. Palló G (2009) Isotope research before isotopy: George Hevesy’s early radioactivity research in the Hungarian context. Dynamis 29:167–189CrossRefGoogle Scholar
  169. Papiernik R et al (1982) Structure du tetrafluorure de zirconium, ZrF4 alpha. Acta Crystallogr B 38:2347–2353CrossRefGoogle Scholar
  170. Park PK, Kang S-W (2006) Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3. Appl Phys Lett 89:192905.  https://doi.org/10.1063/1.2387126CrossRefGoogle Scholar
  171. Patchett PJ (1983) Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim Cosmochim Acta 47(1):81–91CrossRefGoogle Scholar
  172. Patchett PJ, Tatsumoto M (1980) Lu–Hf total-rock isochron for the eucrite meteorites. Nature 288(5791):571–574CrossRefGoogle Scholar
  173. Patel SG et al (1998) Electrical properties of zirconium diselenide single crystals grown by iodine transport method. Bull Mat Sci 21(3):213–217CrossRefGoogle Scholar
  174. Pattarinee K (2010) Deposition of zirconium nitride thin films produced by reactive DC magnetron sputtering. As J Energy Environ 11(1):60–68Google Scholar
  175. Perry DL (2011) Handbook of inorganic compounds, 2. Aufl. Taylor & Francis, Abingdon, S 194/472/475/479/488. ISBN 1-4398-1462-7CrossRefGoogle Scholar
  176. Peshev P, Bliznakov G (1968) On the borothermic preparation of titanium, zirconium and hafnium diborides. J Less Comm Met 14:23–32.  https://doi.org/10.1016/0022-5088(68)90199-9CrossRefGoogle Scholar
  177. Pierson HO (1996) Handbook of refractory carbides & nitrides: properties, characteristics, processing and applications. William Andrew/Elsevier, Norwich, S 73/76. ISBN 0-08-094629-1Google Scholar
  178. Pierson HO (1999) Handbook of chemical vapor deposition, 2nd edition: principles, technology. William Andrew Publishing, Norwich, S 256/331. ISBN 0-08094668-2Google Scholar
  179. Prechtl JJ (1826) Jahrbücher des kaiserlichen königlichen polytechnischen Instituts in Wien. 9:265Google Scholar
  180. Prieto P et al (1993) Electronic structure of insulating zirconium nitride. Phys Rev B 47:1613CrossRefGoogle Scholar
  181. Prout K et al (1974) The crystal and molecular structures of bent bis-π-cyclopentadienyl–metal complexes: (a) bis-π-cyclopentadienyldibromorhenium(V) tetrafluoroborate, (b) bis-π-cyclopentadienyldichloromolybdenum(IV), (c) bis-π-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate, (d) bis-π-cyclopentadienylethylchloromolybdenum(IV), (e) bis-π-cyclopentadienyldichloroniobium(IV), (f) bis-π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate, (g) μ-oxo-bis[bis-π-cyclopentadienylchloroniobium(IV)] tetrafluoroborate, (h) bis-π-cyclopentadienyldichlorozirconium. Acta Cryst Sect B, Struct Cryst and Crystal Chem 30(10):2290–2304.  https://doi.org/10.1107/S0567740874007011
  182. Quijano R (2009) Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2, Phys. Rev B 184103:80.  https://doi.org/10.1103/PhysRevB.80.184103CrossRefGoogle Scholar
  183. Ramakrishnany S, Rogozinski MW (1997) Properties of electric arc plasma for metal cutting. J Phys D Appl Phys 30(4):636CrossRefGoogle Scholar
  184. Randich E (1979) Chemical vapor deposited borides of the form (Ti,Zr)B2 and (Ta,Ti)B2. Thin Solid Films 63(2):309–313.  https://doi.org/10.1016/0040-6090(79)90034-8CrossRefGoogle Scholar
  185. Rees WS Jr (2008) CVD of nonmetals. Wiley, New York, S 370. ISBN 352761480XGoogle Scholar
  186. Riedel E, Janiak C (2011) Anorganische Chemie. De Gruyter-Verlag, Berlin, S 788/792–793. ISBN 3-11-022566-2Google Scholar
  187. Riekel C (1976) Structure refinement of TiSe2 by Neutron diffraction. J Solid State Chem 17(4):389–392.  https://doi.org/10.1016/S0022-4596(76)80008-4CrossRefGoogle Scholar
  188. Ritterskamp P et al (2007) Ein auf Titandisilicid basierender, halbleitender Katalysator zur Wasserspaltung mit Sonnenlicht - reversible Speicherung von Sauerstoff und Wasserstoff. Angew Chem 119:7917–7921.  https://doi.org/10.1002/ange.200701626CrossRefGoogle Scholar
  189. Roth A (1994) Vacuum sealing techniques. Springer, Berlin/Heidelberg, S 212. ISBN 978-1-56396-259-2Google Scholar
  190. Rouhi AM (1998) Organozirconium chemistry arrives. Chem Eng News 82(16):162.  https://doi.org/10.1021/cen-v082n015.p035CrossRefGoogle Scholar
  191. Ruh R et al (1968) The system Zirconia-Hafnia. J Am Ceram Soc 51:23–27CrossRefGoogle Scholar
  192. Salmang H, Scholze H (2006) Keramik. Springer, Berlin/Heidelberg, S 380. ISBN 978-3-540-49469-0Google Scholar
  193. Sauthoff G (1995) Intermetallics. Wiley-VCH, Weinheim. ISBN 3-527-29320-5CrossRefGoogle Scholar
  194. Scerri ER (1994) Prediction of the nature of hafnium from chemistry, Bohr’s theory and quantum theory. Ann Sci 51(2):137CrossRefGoogle Scholar
  195. Schatt W et al (2006) Pulvermetallurgie. Springer, Heidelberg, S 506. ISBN 9783540236528Google Scholar
  196. Schemel JH (1977) ASTM Manual on Zirconium and Hafnium. ASTM International, West Conshohocken, S 1–5. ISBN 978-0-8031-0505-8CrossRefGoogle Scholar
  197. Schlueter N et al (2007) Effect of titanium tetrafluoride and sodium fluoride on erosion progression in enamel and dentine in vitro. Caries Res 41:141–145CrossRefPubMedPubMedCentralGoogle Scholar
  198. Schofield K (1980) Aromatic nitration. Cambridge University Press, Cambridge, S 97. ISBN 9780521233620Google Scholar
  199. Sekiya T, Kurita S (2008) Defects in Anatase Titanium Dioxide. In: Ohno K, Tanaka M, Takeda J, Kawazoe Y (eds) Nano- and Micromaterials. Advances in Materials Research, vol 9. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-540-74557-0_4
  200. Siervo de A et al. (2006) Hafnium silicide formation on Si(100) upon annealing, Phys Rev B, 74, 075319.Google Scholar
  201. Sharpe AG (2005) Inorganic chemistry. Pearson Education, London, S 652. ISBN 978-0-13-039913-7Google Scholar
  202. Singh G (2007) Chemistry of D-block elements. Discovery Publishing House, New Delhi, S 107. ISBN 978-818356242-3Google Scholar
  203. Snell PO (1968) Phase relationships in the Ti-P system with some notes on the crystal structures of TiP2 and ZrP2. Acta Chem Scand 22:1942–1952CrossRefGoogle Scholar
  204. Söderlund U et al (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of precambrian mafic intrusions. Earth Planet Sci Lett 219(3–4):311–324CrossRefGoogle Scholar
  205. Steudel R (2013) Chemie der Nichtmetalle Synthesen – Strukturen – Bindung – Verwendung. De Gruyter-Verlag, Berlin, S 212. ISBN 978-3-11-030797-9CrossRefGoogle Scholar
  206. Stirn A (2009) Vom Triebwerk bis zum Campanile. Süddeutsche Zeitung 25:22Google Scholar
  207. Straumanis ME, Faunce CA (1967) Der unvollkommene Aufbau des Hafniumnitrids und das Bindungsproblem. Z Anorg Allg Chem 353:329–336.  https://doi.org/10.1002/zaac.19673530514CrossRefGoogle Scholar
  208. Su K, Sneddon LG (1993) A polymer precursor route to metal borides. Chem Mater 5:1659–1668.  https://doi.org/10.1021/cm00035a013CrossRefGoogle Scholar
  209. Swihart MT et al (2001) Fundamental gas-phase and surface chemistry of vapor-phase deposition II and Process control, diagnostics and modeling in semiconductor manufacturing IV: proceedings of the international symposium. The Electrochemical Society, Pennington, S 153. ISBN 978-1-56677-319-5Google Scholar
  210. Switendick AC (1984) Electronic structure of γ phase zirconium hydride. J Less Comm Met 103(2):309–315.  https://doi.org/10.1016/0022-5088(84)90254-6CrossRefGoogle Scholar
  211. Terashima K, Imai I (1987) Indirect absorption edge of ZrS2 and HfS2. Solid State Commun 63(4):315.  https://doi.org/10.1016/0038-1098(87)90916-1CrossRefGoogle Scholar
  212. Thiele ES (1998) Scattering of electromagnetic radiation by complex microstructures in the resonant regime. Ph.D. Thesis, University of PennsylvaniaGoogle Scholar
  213. Thomas T et al (2011) Titanium arsenide films from the atmospheric pressure chemical vapour deposition of tetrakisdimethylamidotitanium and tert-butylarsine. Dalton Trans 40(40):10664–10669.  https://doi.org/10.1039/c1dt10457hCrossRefPubMedPubMedCentralGoogle Scholar
  214. Tornqvist EGM, Libby WF (1979) Crystal structure, solubility, and electronic spectrum of titanium tetraiodide. Inorg Chem 18:1792–1796CrossRefGoogle Scholar
  215. Toumanov IN (2003) Plasma and high frequency processes for obtaining and processing materials in the nuclear fuel cycle. Nova Publishers, Hauppauge, S 104. ISBN 978-1-59033-009-8Google Scholar
  216. Troyanov SI (1986) Crystal structure of gamma-ZrI4. Kristallografiya 31:446–449Google Scholar
  217. Türler A et al (1998) Evidence for relativistic effects in the chemistry of element 104. J Alloys Compd 271-273:287.  https://doi.org/10.1016/S0925-8388(98)00072-3CrossRefGoogle Scholar
  218. Urbain MG (1911) Sur un nouvel élément qui accompagne le lutécium et le scandium dans les terres de la gadolinite: le celtium. Comptes rendus 141:152Google Scholar
  219. Urbain MG (1922) Sur les séries L du lutécium et de l’ytterbium et sur l’identification d’un celtium avec l’élément de nombre atomique 72. Comptes rendus 174:1347Google Scholar
  220. Vértes A (2007) George Hevesy (György Hevesy). J Radioanal Nucl Chem 271(1):19–26CrossRefGoogle Scholar
  221. Voitovich RF, Golovko ÉI (1975) Oxidation of hafnium alloys with nickel. Met Sci Heat Treat 17(3):207CrossRefGoogle Scholar
  222. Wang ZL, Kang ZC (1998) Functional and smart materials: structural evolution and structure analysis. Plenum Press, New York, S 74. ISBN 978-0-306-45651-0CrossRefGoogle Scholar
  223. Werner C (2009) Zahnimplantate aus Zirkonoxid auf dem Vormarsch? Neue Zürcher Zeitung, Zürich, SchweizGoogle Scholar
  224. Westbrook H, Fleischer RL (1994) Intermetallic compounds: principles and applications. 2 volume set: principles/practice, Bd 1 & 2. Wiley, Chichester. ISBN 0-471-93453-4Google Scholar
  225. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4273Google Scholar
  226. Wilkinson G, Birmingham JM (1954) Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta. J Am Chem Soc 76(17):4281–4284.  https://doi.org/10.1021/ja01646a008CrossRefGoogle Scholar
  227. Wilson D (1983) Rutherford. Simple genius. MIT Press, Cambridge. ISBN 0-262-23115-8Google Scholar
  228. Winkler J (2003) Titandioxid. Vincentz Network, Hannover, S 55. ISBN 3-87870-738-XGoogle Scholar
  229. Wochenblatt Paraguay (2010). http://latina-press.com/news/56028-riesige-titan-vorkommen-in-paraguay-entdeckt/. Zugegriffen am 08.11.2010
  230. Wu DS et al (1996) Characterization of hafnium diboride thin film resistors by r.f. magnetron sputtering. Mater Chem Phys 45:163.  https://doi.org/10.1016/0254-0584(96)80096-4CrossRefGoogle Scholar
  231. Yan Y et al (2006) New route to synthesize ultra-fine zirconium diboride powders using inorganic–organic hybrid precursors. J Am Ceram Soc 89:3585–3588.  https://doi.org/10.1111/j.1551-2916.2006.01269.xCrossRefGoogle Scholar
  232. Zhang SC et al (2006) Pressureless densification of zirconium diboride with boron carbide additions. J Am Ceram Soc 89(5):1544–1550.  https://doi.org/10.1111/j.1551-2916.2006.00949.xCrossRefGoogle Scholar
  233. Zoli L et al (2018) Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride. J Am Ceram Soc 101(6):2627–2637.  https://doi.org/10.1111/jace.15401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.LANXESS Deutschland GmbHLeverkusenDeutschland

Personalised recommendations