Advertisement

Eisengruppe: Elemente der achten Nebengruppe

  • Hermann SiciusEmail author
Living reference work entry

Zusammenfassung

Die Elemente der achten Nebengruppe (Eisen, Ruthenium, Osmium und Hassium) sind zueinander physikalisch und chemisch relativ ähnlich. Auch bei Ruthenium und Osmium wirkt sich die Lanthanoidenkontraktion noch aus. In ihren physikalischen Eigenschaften unterscheiden sich die Platinmetalle Ruthenium und Osmium schon relativ deutlich, aber nur wenig in Bezug auf ihre chemischen Eigenschaften. Eisen weicht dagegen hinsichtlich seines unedlen Charakters und seiner niedrigeren Dichten, Schmelz- und Siedepunkte von Ruthenium, Osmium und wohl auch Hassium deutlich ab. Die Elemente dieser Gruppe können maximal acht äußere Valenzelektronen (jeweils zwei s- und sechs d-Elektronen) abgeben, um eine stabile Elektronenkonfiguration zu erreichen. Bei Eisen ist die Oxidationsstufe +3 die stabilste, bei Ruthenium +4, bei Osmium sowie Hassium +8.

Die Entdeckung des Eisens erfolgte schon 3000 v. Chr. in Mesopotamien, wogegen Osmium und Ruthenium in der ersten Hälfte des 19. Jahrhunderts entdeckt wurden. Die Erstdarstellung von Atomen des Hassiums gelang 1984.

Literatur

  1. Alireza PL et al (2009) Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J Phys Cond Matter 21:012208.  https://doi.org/10.1088/0953-8984/21/1/012208 CrossRefGoogle Scholar
  2. Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Met Rev 45(2):62–69Google Scholar
  3. Alsfasser R et al (2007) Moderne Anorganische Chemie. De Gruyter, Berlin, S 343. ISBN 3-11-019060-5Google Scholar
  4. Anft BP (1957) Claus, Carl Ernst. In: Neue Deutsche Biographie, Band 3. Duncker & Humblot, Berlin, S 269. ISBN 3-428-00184-2Google Scholar
  5. Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66(1):1–9PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anupam P et al (2009) Superconductivity and magnetism in K-doped EuFe2As2. J Phys Cond Matter 21(26):265701.  https://doi.org/10.1088/0953-8984/21/26/265701 CrossRefGoogle Scholar
  7. Arblaster JW (1989) Densities of osmium and iridium. Platin Met Rev 33(1):14–16Google Scholar
  8. Arblaster JW (2005) What is the true melting point of osmium? Platin Met Rev 49(4):166–168CrossRefGoogle Scholar
  9. Armbruster P et al (1986) Evidence for 264108, the heaviest known even-even isotope. Z Phys A 324(4):489–490Google Scholar
  10. Armbruster M et al (2000) Über Eisentribromid: Untersuchungen von Gleichgewichten mit FeBr3, Kristallstruktur und Charakterisierung. Z Anorg Allg Chem 626(1):187–195.  https://doi.org/10.1002/(SICI)1521-3749(200001)626:1<187::AID-ZAAC187>3.0.CO;2-X CrossRefGoogle Scholar
  11. Audi G et al (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128CrossRefGoogle Scholar
  12. Auerbach M, Ballard H (2010) Clinical use of intravenous iron: Administration, efficacy, and safety. Hematol Am Soc, Hematol Educ Program 2010:338–347CrossRefGoogle Scholar
  13. Baek S-H et al (2009) First-order magnetic transition in single-crystalline CaFe2As2 detected by 75As nuclear magnetic resonance. Phys Rev B 79(5):052504.  https://doi.org/10.1103/PhysRevB.79.052504 CrossRefGoogle Scholar
  14. Barber RC et al (1993) Discovery of the transfermium elements. Pure Appl Chem 65(8):1757.  https://doi.org/10.1351/pac199365081757 CrossRefGoogle Scholar
  15. Barnard CF, Bennett J (2004) Oxidation states of ruthenium and osmium. Platin Met Rev 48(4):157–158CrossRefGoogle Scholar
  16. Bauer G, Ruthardt K (2013) Elemente der Achten Nebengruppe: Platinmetalle Platin · Palladium · Rhodium · Iridium · Ruthenium · Osmium. Springer, Heidelberg, S 157. ISBN 978-3-662-28796-5Google Scholar
  17. Bergmann W (2009) Werkstofftechnik 2: Werkstoffherstellung – Werkstoffverarbeitung, Werkstoffanwendung. Carl Hanser, München, S 268. ISBN 3-446-41711-7CrossRefGoogle Scholar
  18. Bertau M et al (2013) Industrielle Anorganische Chemie, 4. Aufl. Wiley, New York, S 260. ISBN 978-3-527-33019-5CrossRefGoogle Scholar
  19. Bielawa H et al (2001) Der Ammoniakkatalysator der nächsten Generation: Barium-promotiertes Ruthenium auf oxidischen Trägern. Angew Chem 113(6):1093–1096CrossRefGoogle Scholar
  20. Blachnik R et al (1998) Taschenbuch für Chemiker und Physiker. Band III: Elemente, anorganische Verbindungen und Materialien, Minerale, 4. Aufl. Springer, Berlin, S 454. ISBN 3-540-60035-3Google Scholar
  21. Böge A et al (2013) Handbuch Maschinenbau: Grundlagen und Anwendungen der Maschinenbau-Technik. Springer, Berlin/Heidelberg, S M-5. ISBN 3-8348-2479-8CrossRefGoogle Scholar
  22. Boman CE et al (1970) Precision determination of the crystal structure of osmium dioxide. Acta Chem Scand 24:123–128.  https://doi.org/10.3891/acta.chem.scand.24-0123 CrossRefGoogle Scholar
  23. Bouhtiyyaa S et al (2013) Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scripta Mat 68(9):659–662.  https://doi.org/10.1016/j.scriptamat.2013.01.030 CrossRefGoogle Scholar
  24. Braga D et al (1993) Nickel carbonyl [Ni(CO)4] and iron carbonyl [Fe(CO)5]: molecular structures in the solid state. Organomet 12:1481–1483.  https://doi.org/10.1021/om00028a082 CrossRefGoogle Scholar
  25. Brauer G (1975) Handbuch der präparativen anorganischen Chemie, Band I, 3. Aufl. Enke, Stuttgart. ISBN 3-432-02328-6Google Scholar
  26. Brauer G (1981) Handbuch der präparativen anorganischen Chemie, Band III, 3. Aufl. Enke, Stuttgart, S 1634–1635/1649/1745. ISBN 3-432-87823-0Google Scholar
  27. Brick JL et al (1991) The rhenium osmium chronometer, the iron meteorites revisited. Meteorit 26:318Google Scholar
  28. Brodersen K et al (1967) Die Feinstruktur des Ruthenium-III-bromids. Z Anorg Allg Chem 357(4-5):162–171Google Scholar
  29. Brown JR (1994) Foseco Foundryman’s Handbook. Butterworth-Heinemann, Oxford, S 222. ISBN 0-7506-1939-2Google Scholar
  30. Brunhuber E, Hasse S (2001) Gießerei-Lexikon. Fachverlag Schiele & Schoen, Berlin, S 956. ISBN 3-7949-0655-1Google Scholar
  31. Burney C (2004) Historical dictionary of the hittites. Historical dictionaries of ancient civilizations and historical eras. Scarecrow Press/Rowman & Littlefield, Lanham, S 135. ISBN 978-0-8108-6564-8Google Scholar
  32. Burns RC, O’Donnell TA (1979) Preparation and characterization of osmium pentachloride, a new binary chloride of osmium. Inorg Chem 18:3081–3086CrossRefGoogle Scholar
  33. Bush RP (1991) Recovery of platinum group metals from high level radioactive waste. Platin Met Rev 35(4):202–208Google Scholar
  34. Cali JP (1964) Trace analysis of semiconductor materials. Pergamon Press, Oxford, S 92. Library of Congress Catalogue Card No. 63-18922Google Scholar
  35. Canfield PC et al (2009) Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure. Phys C Supercond 469(9–12):404.  https://doi.org/10.1016/j.physc.2009.03.033 CrossRefGoogle Scholar
  36. Cherdyntsev VV, Mikhailov VF (1963) The Primordial Transuranium Isotope in Nature. Geokhim 1:3–14. https://www.osti.gov/biblio/4748393 Google Scholar
  37. Chung H-Y et al (2007) Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316(5823):436–439.  https://doi.org/10.1126/science.1139322 CrossRefPubMedGoogle Scholar
  38. Cohen M (1985) Calculation of bulk moduli of diamond and zinc-blende solids. Phys Rev B 32(12):7988–7991CrossRefGoogle Scholar
  39. Cottier RJ et al (2006) Molecular beam epitaxial growth of osmium silicides. J Vac Sci Tech B Microelectr Nanomet Struct Proc Meas Phenom 24:1488.  https://doi.org/10.1116/1.2192527 CrossRefGoogle Scholar
  40. Cotton S (1997) Chemistry of precious metals. Springer Science & Business Media, Heidelberg, S 5. ISBN 978-94-009-1463-6CrossRefGoogle Scholar
  41. Cotton FA, Rice CE (1977) Structure of the high-temperature form of osmium(IV) chloride. Inorg Chem 16:1865CrossRefGoogle Scholar
  42. Cumberland RW et al (2005) Osmium diboride, an ultra-incompressible, hard material. J Am Chem Soc 127(20):7264–7265.  https://doi.org/10.1021/ja043806y CrossRefPubMedGoogle Scholar
  43. De Nora O (1970) Anwendung maßbeständiger aktivierter Titan-Anoden bei der Chloralkali-Elektrolyse. Chem Eng Technol 42(4):222–226Google Scholar
  44. Dehnicke K, Lößberg R (1980) Eine neue Synthese und das IR-Spektrum von Osmiumpentachlorid. Z Naturforsch B 35:1525–1528CrossRefGoogle Scholar
  45. Dragojević I et al (2009) New isotope 263108Hs. Phys Rev C 79:011602CrossRefGoogle Scholar
  46. Drews T et al (2006) Solid state molecular structures of transition metal hexafluorides. Inorg Chem 45(9):3782–3788CrossRefGoogle Scholar
  47. Düllmann CE (2008) Investigation of group 8 metallocenes @ TASCA, 7th workshop on recoil separator for superheavy element chemistry. Gesellschaft für Schwerionenforschung, DarmstadtGoogle Scholar
  48. Düllmann CE et al (2002) Chemical investigation of hassium (element 108). Nature 418:859–862PubMedCrossRefGoogle Scholar
  49. Dunitz JD et al (1956) The crystal structure of ferrocene. Acta Cryst 9(4):373–375.  https://doi.org/10.1107/S0365110X56001091 CrossRefGoogle Scholar
  50. Dvorak J et al (2006) Doubly magic nucleus 270108Hs162. Phys Rev Lett 97(24):242501–242504PubMedCrossRefGoogle Scholar
  51. Eagleson M (1994) Concise encyclopedia chemistry. De Gruyter, Berlin, S 760. ISBN 978-3-11-011451-5Google Scholar
  52. Eichner K, Kappert HF (2005) Zahnärztliche Werkstoffe und ihre Verarbeitung, 8. Aufl. Thieme, Stuttgart, S 93. ISBN 3-13-127148-5Google Scholar
  53. Elschenbroich C (2008) Organometallchemie, 6. Aufl. Teubner, Wiesbaden, S 632 ff. ISBN 978-3-8351-0167-8Google Scholar
  54. Fan AKL et al (1972) Preparation and properties of FeAs2 and FeSb2. J Sol State Chem 5:136.  https://doi.org/10.1016/0022-4596(72)90021-7 CrossRefGoogle Scholar
  55. Fellenberg G (1997) Chemie der Umweltbelastung, 3. Aufl. Teubner, Stuttgart, S 158. ISBN 3-519-23510-2CrossRefGoogle Scholar
  56. Ferey G, de Paper R (1986) A new form of FeF3 with the pyrochlore structure: soft chemistry synthesis, crystal structure, thermal transitions and structural correlations with the other forms of FeF3. Mater Res Bull 21:971–978CrossRefGoogle Scholar
  57. Gabriel RA (2002) The great armies of antiquity. Greenwood Publishing Group, Westport, S 75. ISBN 978-0-275-97809-9Google Scholar
  58. Ghiorso A et al (1993) Responses on the report ‚discovery of the transfermium elements‘ followed by reply to the responses by transfermium working group. Pure Appl Chem 65(8):1815–1824.  https://doi.org/10.1351/pac199365081815 CrossRefGoogle Scholar
  59. Gobrecht J, Rumpler E (2006) Werkstofftechnik – Metalle. Oldenbourg, München, S 139 ff. ISBN 3-486-57903-7Google Scholar
  60. Greedan JE et al (1968) Metallic nature of osmium dioxide. Inorg Chem 7(11):2461–2463.  https://doi.org/10.1021/ic50069a059 CrossRefGoogle Scholar
  61. Greenwood NN, Earnshaw A (1988) Chemie der Elemente, 1. Aufl. VCH, Weinheim, S 408. ISBN 3-527-26169-9Google Scholar
  62. Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier, Amsterdam, S 1083. ISBN 978-0-08-050109-3Google Scholar
  63. Griffith WP (1989) Ruthenium and osmium oxo complexes as organic oxidants. Platin Met Rev 33(4):181–185Google Scholar
  64. Griffith WP (2008) The periodic table and the platinum group metals. Platin Met Rev 52(2):114–119CrossRefGoogle Scholar
  65. Gritzner G, Kůta J (1984) Recommendations on reporting electrode potentials in nonaqueous solvents (1983). Pure Appl Chem 56(4):461–466CrossRefGoogle Scholar
  66. Gu T et al (2013) Probing nonequivalent sites in iron phosphide Fe2P and its mechanism of phase transition. Eur Phys J B 86:311.  https://doi.org/10.1140/epjb/e2013-40086-3 CrossRefGoogle Scholar
  67. Haberecht J et al (2001) Refinement of the crystal structure of iron dibromide, FeBr2. Z Kristallogr New Cryst Struct 216:510Google Scholar
  68. Hagenmuller P (2012) Preparative methods in solid state chemistry. Elsevier, Amsterdam, S 299. ISBN 0-323-14436-5Google Scholar
  69. Harikrishnan G (2015) Vibrational spectra of ruthenium carbide structures yielded by the structure search employing the evolutionary algorithm. Mater Sci Semicond Process 40:484–490.  https://doi.org/10.1016/j.mssp.2015.07.006 CrossRefGoogle Scholar
  70. Hartley FR (2013) Chemistry of the platinum group metals recent developments. Elsevier, Amsterdam, S 474–475. ISBN 978-0-08-093395-5Google Scholar
  71. Hasse S (2001) Giesserei-Lexikon. Fachverlag Schiele & Schoen, Berlin, S 618. ISBN 3-7949-0655-1Google Scholar
  72. Haynes WM (2015) CRC Handbook of Chemistry and Physics, 96. Aufl. CRC Press, Boca Raton, S 4–79. ISBN 978-1-4822-6097-7Google Scholar
  73. Hebbache M et al (2006) A new superhard material: osmium diboride OsB2. Sol State Comm 139(5):227–231.  https://doi.org/10.1016/j.ssc.2006.05.041 CrossRefGoogle Scholar
  74. Helck W, Otto E (1975) Lexikon der Ägyptologie, Band 1. Harrassowitz, Wiesbaden. Spalten 1209-1210Google Scholar
  75. Hillebrecht H et al (2004) About trihalides with TiI3 chain structure: proof of pair forming of cations in -RuCl3 and RuBr3 by temperature dependent single crystal x-ray analyses. Z Anorg Allg Chem 630:2199–2204CrossRefGoogle Scholar
  76. Hödrejärv H (2004) Gottfried Wilhelm Osann and Ruthenium. Proc Est Acad Sci Chem 53(3):125–144Google Scholar
  77. Hoffman DC et al (2006) Transactinides and the future elements. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements, 3. Aufl. Springer Science & Business Media, Dordrecht. ISBN 1-4020-3555-1Google Scholar
  78. Hofmann S et al (2001) The new isotope 270110Ds and its decay products 266108Hs and 262106Sg. Eur Phys J A 10:5–10CrossRefGoogle Scholar
  79. Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. de Gruyter, Berlin. ISBN 978-3-11-017770-1CrossRefGoogle Scholar
  80. Holleman AF, Wiberg E, Wiberg N (2017) Anorganische Chemie, 103. Aufl. de Gruyter, Berlin, S 2119. ISBN 978-3-11-026932-1Google Scholar
  81. Holloway JH et al (1964) The crystal structure of ruthenium pentafluoride. J Chem Soc 1964:644–648CrossRefGoogle Scholar
  82. Hosono H et al (2015) Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides. Sci Tech Adv Mat 16(3):033503.  https://doi.org/10.1088/1468-6996/16/3/033503 CrossRefGoogle Scholar
  83. Housecroft CE (2005) Inorganic chemistry. Pearson Education, London, S 675. ISBN 0-13-039913-2Google Scholar
  84. Housecroft CE, Sharpe AG (2004) Inorganic chemistry. Prentice Hall, Upper Saddle River. ISBN 978-0130399137Google Scholar
  85. Huang Q et al (2008) Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of feas-based high-temperature superconductors. Phys Rev Lett 101(25):257003.  https://doi.org/10.1103/PhysRevLett.101.257003
  86. Hydes PC (1980) Electrodeposited ruthenium as an electrical contact material. Platin Met Rev 24(2):50–55Google Scholar
  87. Ishiguro A et al (2002) Nanoparticles of amorphous ruthenium sulfide easily obtainable from a TiO2-supported hexanuclear cluster complex [(Ru6C(CO)16)2-]: a highly active catalyst for the reduction of SO2 with H2. Chemistry 8(14):3260–3268.  https://doi.org/10.1002/1521-3765(20020715)8:14<3260 CrossRefPubMedGoogle Scholar
  88. IUPAC, Commission on Nomenclature of Inorganic Chemistry (1997) Names and symbols of transfermium elements (IUPAC Recommendations 1997). Pure Appl Chem 69(12):2471.  https://doi.org/10.1351/pac199769122471 CrossRefGoogle Scholar
  89. Ivanov AV (2006) The possible existence of Hs in nature from a geochemical point of view. Phys Part Nucl Lett 3(3):165–168CrossRefGoogle Scholar
  90. Janiak C et al (2012) Riedel, Moderne Anorganische Chemie. de Gruyter, Berlin, S 356. ISBN 978-3-11-024901-9CrossRefGoogle Scholar
  91. Jeitschko W, Braun DJ (1978) Synthesis and crystal structure of the iron polyphosphide FeP4. Acta Cryst Sect B Struct Cryst Crystal Chem 34:3196–3201.  https://doi.org/10.1107/S056774087801047X CrossRefGoogle Scholar
  92. Jiménez-Villacorta F (2017) Nanocrystalline cubic ruthenium carbide formation in the synthesis of graphene on ruthenium ultrathin films. J Mater Chem C 39:10260–102690.  https://doi.org/10.1039/C7TC02855E CrossRefGoogle Scholar
  93. Johannsen O (1953) Geschichte des Eisens, 3. Aufl. Verlag Stahleisen, Düsseldorf, S 38–45Google Scholar
  94. Johnson BFG (1977) Inorganic chemistry of the transition elements. Royal Society of Chemistry, Cambridge, S 321. ISBN 0-85186-540-2CrossRefGoogle Scholar
  95. Jolly WL (1968) Bis(cyclopentadienyl)iron (Ferrocene). Inorg Synth 11:120–122Google Scholar
  96. Joshi AA, Hosmani SS (2014) Pack-boronizing of aisi 4140 steel: boronizing mechanism and the role of container design. Mater Manufact Proc 29(9):1062–1072.  https://doi.org/10.1080/10426914.2014.921705 CrossRefGoogle Scholar
  97. Kapfenberger C et al (2006) Structure refinements of iron borides Fe2B and FeB. Z Kristallogr 221:477–481.  https://doi.org/10.1524/zkri.2006.221.5-7.477 CrossRefGoogle Scholar
  98. Karsten G (1887) Osann, Gottfried Wilhelm. In: Allgemeine Deutsche Biographie, Bd 24. Duncker & Humblot, Leipzig, S 461Google Scholar
  99. Katsuraki H, Achiwa N (1966) The magnetic structure of Fe2As. J Phys Soc Jpn 21:2238–2243CrossRefGoogle Scholar
  100. Kealy TJ, Pauson L (1951) A new type of organo-iron compound. Nature 168(4285):1039–1040.  https://doi.org/10.1038/1681039b0 CrossRefGoogle Scholar
  101. Keddam M, Chentouf SM (2005) A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding. Appl Surf Sci 252:393–399.  https://doi.org/10.1016/j.apsusc.2005.01.016 CrossRefGoogle Scholar
  102. Keimer B (2011) Eisenarsenid-Supraleiter – ein Beispiel für die zentrale Rolle der Kristallzucht in der Festkörperforschung (Forschungsbericht 2011, Max-Planck-Institut für Festkörper-Forschung. Deutschland, StuttgartGoogle Scholar
  103. Kempter CP, Fries RJ (1961) Crystallography of the Ru-B and Os-B systems. J Chem Phys 34:1994CrossRefGoogle Scholar
  104. Kickelbick G (2008) Chemie für Ingenieure. Pearson GmbH, Hallbergmoos, S 256. ISBN 3-8273-7267-4Google Scholar
  105. Kiefer S et al (2017) Mineral compositions and phase relations of the complex sulfarsenides and arsenides from Dobšiná (Western Carpathians, Slovakia). Ore Geol Rev 89:894.  https://doi.org/10.1016/j.oregeorev.2017.07.026 CrossRefGoogle Scholar
  106. Kohgo Y et al (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88(1):7–15PubMedPubMedCentralCrossRefGoogle Scholar
  107. Koizumi Y et al (2003) Proceedings of the international gas turbine congress 2003, Development of a next-generation Ni-base single crystal superalloy. TokyoGoogle Scholar
  108. Kolarik Z, Renard EV (2005) Potential applications of fission platinoids in industry. Platin Met Rev 49:79–90CrossRefGoogle Scholar
  109. Kreyssig A et al (2008) Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering. Phys Rev B 78(18):184517.  https://doi.org/10.1103/PhysRevB.78.184517 CrossRefGoogle Scholar
  110. Krishnamoorthy K et al (2017) Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochim Acta 227(10):85–94.  https://doi.org/10.1016/j.electacta.2016.12.171 CrossRefGoogle Scholar
  111. Kundys B et al (2010) Light-induced size changes in BiFeO3 crystals. Nat Mater 9:803–805PubMedCrossRefGoogle Scholar
  112. Lautenschläger K-H (2007) Taschenbuch der Chemie. Harri Deutsch, Frankfurt am Main, S 410. ISBN 978-3-8171-1760-4Google Scholar
  113. Lazarev Y et al (1995) New nuclide 267108Hs produced by the 238U + 34S reaction. Phys Rev Lett 75(10):1903–1906PubMedCrossRefGoogle Scholar
  114. Leblanc M et al (1985) Single crystal refinement of the structure of rhombohedral FeF3. Rev Chim Minér 22:107–114Google Scholar
  115. Leddicotte GW (1961) The radiochemistry of Osmium. National Academies, Washington, DC, S 5Google Scholar
  116. Leithe-Jasper A et al (2008) Superconducting state in SrFe2−xCoxAs2 by internal doping of the iron arsenide layers. Phys Rev Lett 101(20):207004.  https://doi.org/10.1103/PhysRevLett.101.207004 CrossRefPubMedGoogle Scholar
  117. Ley SV et al (1994) Tetrapropylammonium perruthenate, Pr4N+RuO4, TPAP: a catalytic oxidant for organic synthesis. Synth 7:639–666CrossRefGoogle Scholar
  118. Loferski P (2016) Platinum group metals, minerals information. United States Geological Survey, U.S. Department of the Interior, Washington, DCGoogle Scholar
  119. Lu Q et al (2005) Anodic activation of Pt/Ru/C catalysts for methanol oxidation. J Phys Chem B 109(5):1715–1722PubMedCrossRefGoogle Scholar
  120. Lucas A, Lucas JR (1962) Ancient Egyptian materials and industries, 4. Aufl. Edward Arnold Publishers, London, S 237Google Scholar
  121. Lyakhova MB et al (2013) Magnetic properties and domain structure of FeB single crystals. Met Sci Heat Treatm 55(1–2):68–72.  https://doi.org/10.1007/s11041-013-9581-0 CrossRefGoogle Scholar
  122. Machmer P (1967) On the polymorphism of osmium tetrachloride. Chem Comm 1967:610a–610aGoogle Scholar
  123. Macintyre JE (1992) Dictionary of inorganic compounds. CRC Press, Boca Raton, S 221–296. ISBN 978-0-412-30120-9CrossRefGoogle Scholar
  124. Mander LN, Williams CM (2003) Oxidative degradation of benzene rings. Tetrahedr 59(8):1105–1136.  https://doi.org/10.1016/S0040-4020(02)01492-8 CrossRefGoogle Scholar
  125. Marinov A et al (2003) New outlook on the possible existence of superheavy elements in nature. Phys At Nucl 66(6):1137–1145CrossRefGoogle Scholar
  126. Martín VS et al (2006) Ruthenium(VIII) oxide. In: Paquette LA et al (Hrsg) Encyclopedia of reagents for organic synthesis. Wiley, New YorkGoogle Scholar
  127. Matsuya Y et al (2003) An oxidation barrier layer for metal – insulator – metal capacitors: ruthenium silicide. Thin Sol Films 437(1–2):51–56.  https://doi.org/10.1016/S0040-6090(03)00606-0 CrossRefGoogle Scholar
  128. Matthey J (2002) Nanocrystalline ruthenium supercapacitor material. Platin Met Rev 46(3):105Google Scholar
  129. McDermid JM, Lönnerdal B (2012) Iron. Adv Nutr 3(4):532–533PubMedCrossRefGoogle Scholar
  130. Medvedev S et al (2009) Electronic and magnetic phase diagram of beta-Fe1,01Se with superconductivity at 36.7 K under pressure. Nat Materonline, veröffentlicht 14.  https://doi.org/10.1038/nmat2491 PubMedCrossRefGoogle Scholar
  131. Medvedev V et al (2016) Spiegel, insbesondere für eine mikrolithische Projektionsbelichtungsanlage (DE 102015204631 A1, Carl Zeiss GmbH, Jena, veröffentlicht 10. März)Google Scholar
  132. Miller SA et al (1952) 114. Dicyclopentadienyliron. J Chem Soc:632–635.  https://doi.org/10.1039/JR9520000632
  133. Minkel JR (2002) Osmium is stiffer than diamond. Phys Rev Focus 9:16Google Scholar
  134. Münzenberg G et al (1984) The identification of element 108. Z Phys A 317(2):235–236.  https://doi.org/10.1007/BF01421260 CrossRefGoogle Scholar
  135. N N (1999) Ruthenium in living radical polymerization. Platin Met Rev 43(3):102Google Scholar
  136. Nasr K et al (2008) Rigid Multivalent Scaffolds Based on Adamantane. J Org Chem 73(3):1056–1060.  https://doi.org/10.1021/jo702310g CrossRefPubMedPubMedCentralGoogle Scholar
  137. Ninov V et al (1999) Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb. Phys Rev Lett 83(6):1104–1107CrossRefGoogle Scholar
  138. Nubel PO, Hunt CL (1999) A convenient catalyst system employing RuCl3 or RuBr3 for metathesis of acyclic olefins. J Mol Catal A Chem 1455:323–327CrossRefGoogle Scholar
  139. Nunez M et al (1990) Efficient oxidation of phenyl groups to carboxylic acids with ruthenium tetraoxide. A simple synthesis of (R)-.gamma.-caprolactone, the pheromone of Trogoderma granarium. J Org Chem 55(6):1928–1932.  https://doi.org/10.1021/jo00293a044 CrossRefGoogle Scholar
  140. Oganessian YT et al (1999) Synthesis of superheavy nuclei in the 48Ca + 244Pu reaction. Phys Rev Lett 83(16):3154–3157Google Scholar
  141. Osann G (1828) Fortsetzung der Untersuchung des Platins vom Ural. Poggendorffs Ann Phys Chem 14:329–357CrossRefGoogle Scholar
  142. Osann G (1829) Berichtigung, meine Untersuchung des uralschen Platins betreffend. Poggendorffs Ann Phys Chem 15:158CrossRefGoogle Scholar
  143. Osann B (2013) Lehrbuch der Eisen- und Stahlgiesserei: Für den Gebrauch beim Unterricht. Books on Demand, Norderstedt, S 138. ISBN 3-8457-0213-3Google Scholar
  144. Östlin A, Vitos L (2011) First-principles calculation of the structural stability of 6d transition metals. Phys Rev B 84(11):113104CrossRefGoogle Scholar
  145. Oyama ST (1996) Chemistry of transition metal carbides and nitride. Blackie Academic & Professional, London, S 186. ISBN 0-7514-0365-2CrossRefGoogle Scholar
  146. Palstra TTM et al (1985) Superconducting and magnetic transitions in the heavy-fermion system URu2Si2. Phys Rev Lett 55(24):2727–2730.  https://doi.org/10.1103/PhysRevLett.55.2727 CrossRefPubMedGoogle Scholar
  147. Park T et al (2008) Pressure-induced superconductivity in CaFe2As2. J Phys Cond Matter 20(32):322204.  https://doi.org/10.1088/0953-8984/20/32/322204 CrossRefGoogle Scholar
  148. Pauson PL (2001) Ferrocene - how it all began. J Organomet Chem 637–639:3–6CrossRefGoogle Scholar
  149. Perry DL (2011) Handbook of Inorganic Compounds, 2. Aufl. Taylor & Francis, London. ISBN 1-4398-1462-7CrossRefGoogle Scholar
  150. Perry DL (2016) Handbook of inorganic compounds, 2. Aufl. CRC Press, Boca Raton, S 214. ISBN 978-1-4398-1462-8Google Scholar
  151. Pershina V et al (2008) Fully relativistic density-functional-theory calculations of the electronic structures of MO4 (M = Ru, Os, and element 108, Hs) and prediction of physisorption. Phys Rev A 78(3):032518CrossRefGoogle Scholar
  152. Pfaff G (2017) Inorganic pigments. De Gruyter, Berlin, S 199–216. ISBN 978-3-11-048450-2CrossRefGoogle Scholar
  153. Phillips L et al (1999) The decamethylferrocenium/decamethylferrocene redox couple: a superior redox standard to the ferrocenium/ferrocene redox couple for studying solvent effects on the thermodynamics of electron transfer. J Phys Chem 103(32):6713–6722.  https://doi.org/10.1021/jp991381+ CrossRefGoogle Scholar
  154. Pickett WE (2009) Iron-based superconductors: timing is crucial. Nat Phys 5(2):87–88.  https://doi.org/10.1038/nphys1192 CrossRefGoogle Scholar
  155. Pitchkov VN (1996) The discovery of ruthenium. Platin Met Rev 40(4):181–188Google Scholar
  156. Plietker B (2005) Selectivity versus reactivity – recent advances in RuO4-catalyzed oxidations. Synth 5:2453–2472.  https://doi.org/10.1055/s-2005-872172 CrossRefGoogle Scholar
  157. Prieto P et al (2008) Synthesis and characterization of iron nitrides. An XRD,M¨ ossbauer, RBS and XPS characterization. Wiley Interscience, Wiley, New York.  https://doi.org/10.1002/sia.2658. www.interscience.com CrossRefGoogle Scholar
  158. Qin J et al (2008) Is rhenium diboride a superhard material? Adv Mater 20:4780CrossRefGoogle Scholar
  159. Rard JA (1985) Chemistry and thermodynamics of ruthenium and some of its inorganic compounds and aqueous species. Chem Rev 85(1):1–39CrossRefGoogle Scholar
  160. Rau JV et al (2009) Deposition and characterization of superhard biphasic ruthenium boride films. Acta Mater 57:673CrossRefGoogle Scholar
  161. Rechenbach D, Jacobs H (1996) Structure determination of ζ-Fe2N by neutron and synchrotron powder diffraction. J Alloys Comp 235(1):15–22.  https://doi.org/10.1016/0925-8388(95)02097-7 CrossRefGoogle Scholar
  162. Remy H, Kühn M (1924) Beiträge zur Chemie der Platinmetalle. V. Thermischer Abbau des Ruthentrichlorids und des Ruthendioxyds. Z Anorg Chem 127(1):365–388CrossRefGoogle Scholar
  163. Renner H et al (2001) Platinum group metals and compounds. In: Elvers B (Hrsg) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, S 317–388Google Scholar
  164. Rogers DB et al (1972) Single crystals of transition-metal dioxides. Inorg Synth 14:135–145.  https://doi.org/10.1002/9780470132449.ch27 CrossRefGoogle Scholar
  165. Roof RB Jr, Kempter CP (1962) New orthorhombic phase in the Ru-B and Os-B systems. J Chem Phys 37:1473CrossRefGoogle Scholar
  166. Rotter M et al (2008a) Superconductivity at 38 K in the Iron Arsenide (Ba1−xKx)Fe2As2. Phys Rev Lett 101(10):107006.  https://doi.org/10.1103/PhysRevLett.101.107006 CrossRefPubMedGoogle Scholar
  167. Rotter M et al (2008b) Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2. Phys Rev B 78(2):020503.  https://doi.org/10.1103/PhysRevB.78.020503 CrossRefGoogle Scholar
  168. Ruff O, Bornemann F (1910) Über das Osmium, seine analytische Bestimmung, seine Oxyde und seine Chloride. Z Anorg Chem 65:429CrossRefGoogle Scholar
  169. Ruff O, Vidic E (1925) Das Rutheniumpentafluorid und ein Verfahren zur Trennung von Platin und Ruthenium. Z Anorg Allg Chem 143(1):163–182CrossRefGoogle Scholar
  170. Sadovskii MV (2008) High-temperature superconductivity in iron-based layered iron compounds. Phys Uspekhii 51(12):1201–1227.  https://doi.org/10.1070/PU2008v051n12ABEH006820 CrossRefGoogle Scholar
  171. Sakurai T, Takahashi A (1979) Behavior of ruthenium in fluoride-volatility processes – V conversions of RuOF4, RuF4, and RuF5 into RuO4. J Inorg Nucl Chem 41(5):681–685CrossRefGoogle Scholar
  172. Schädel M (2003) The chemistry of superheavy elements. Springer, Heidelberg, S 269. ISBN 978-1402012501CrossRefGoogle Scholar
  173. Schädel M, Türler A (2009) Ein Platz für Schwergewichte. Phys J 8(6):35–40Google Scholar
  174. Schäfer H et al (1963) Zur Chemie der Platinmetalle. RuO2: Chemischer Transport, Eigenschaften, thermischer Zerfall. Z Anorg Allg Chem 319(5–6):327–336Google Scholar
  175. Schäfer H (1986) OsBr3 oder OsO0,5Br3. Z Anorg Allg Chem 535(4):219.  https://doi.org/10.1002/zaac.19865350425 CrossRefGoogle Scholar
  176. Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2(12):946–953PubMedCrossRefGoogle Scholar
  177. Schendzielorz FS et al (2016) A terminal osmium(iv) nitride: ammonia formation and ambiphilic reactivity. Angew Chem Engl Ed 55(38):11417–11420.  https://doi.org/10.1002/anie.201604917 CrossRefGoogle Scholar
  178. Schmidt C (1864) Prof. Dr. Carl Claus, ein Lebensbild. Neues Repert Pharm 13:565–574Google Scholar
  179. Schnepp Z et al (2010) Biotemplating of metal carbide microstructures: the magnetic leaf. Angew Chem Int Ed 49:6564–6566CrossRefGoogle Scholar
  180. Schubert K (1974) Ein Modell für die Kristallstrukturen der chemischen Elemente. Acta Cryst B 30:193–204CrossRefGoogle Scholar
  181. Schutz RW (1996) Ruthenium enhanced titanium alloys. Platin Met Rev 40(2):54–61Google Scholar
  182. Schweda E (2012) Jander/Blasius: Anorganische Chemie I – Einführung & Qualitative Analyse, 17. Aufl. Hirzel, Stuttgart, S 337. ISBN 978-3-7776-2134-0Google Scholar
  183. Seiler P, Dunitz JD (1979a) A new interpretation of the disordered crystal structure of ferrocene. Acta Cryst Sect B 35(5):1068–1074.  https://doi.org/10.1107/S0567740879005598 CrossRefGoogle Scholar
  184. Seiler P, Dunitz JD (1979b) The structure of triclinic ferrocene at 101, 123 and 148 K. Acta Cryst Sect B 35(9):2020–2032.  https://doi.org/10.1107/S0567740879008384 CrossRefGoogle Scholar
  185. Seppelt K et al (2006) Solid state molecular structures of transition metal hexafluorides. Inorg Chem 45(9):3782–3788PubMedPubMedCentralCrossRefGoogle Scholar
  186. Shi JZ et al (2005) Influence of dual-Ru intermediate layers on magnetic properties and recording performance of CoCrPt–SiO2 perpendicular recording media. Appl Phys Lett 87:222503–222506CrossRefGoogle Scholar
  187. Shirage PM et al (2008) Superconductivity at 26 K in (Ca1−xNax)Fe2As2. Appl Phys Express 1:081702.  https://doi.org/10.1143/APEX.1.081702 CrossRefGoogle Scholar
  188. Shirage PM et al (2009) Inverse iron isotope effect on the transition temperature of the (Ba,K)Fe2As2 superconductor. Phys Rev Lett 103(25):257003.  https://doi.org/10.1103/PhysRevLett.103.257003 CrossRefPubMedGoogle Scholar
  189. Singh G (2007) Chemistry of Lanthanides and Actinides. Discovery Publishing House, New Delhi, S 307. ISBN 81-8356-241-8Google Scholar
  190. Smith IC et al (1974) An appraisal of environmental exposure, Env Health Perspect, 8:201–213.  https://doi.org/10.2307/3428200 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Smolańczuk R (1997) Properties of the hypothetical spherical superheavy nuclei. Phys Rev C 56(2):812–824CrossRefGoogle Scholar
  192. Soverna S et al (2003) First chemical investigation of hassium (Hs, Z=108). Czechoslov J Phys 53(1):A291–A298Google Scholar
  193. Sowa H, Ahsbahs H (1998) Pressure-induced octahedron strain in VF3-type compounds. Acta Cryst B 54:578–584CrossRefGoogle Scholar
  194. Steglich F et al (1979) Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2. Phys Rev Lett 43(25):1892.  https://doi.org/10.1103/PhysRevLett.43.1892 CrossRefGoogle Scholar
  195. Stehlow H et al (1960) Der Vergleich der Spannungsreihen in verschiedenen Solventien. II. Z Elektrochem Ber Bunsenges Phys Chem 64(4):483–491Google Scholar
  196. Stellman JM (1998) Osmium, encyclopaedia of occupational health and safety. International Labour Organization, Genf, S 63.34Google Scholar
  197. Stimming U et al (2007) Ruthenium selenide catalysts for cathodic oxygen reduction in direct methanol fuel cells. J Appl Electrochem 37:1455CrossRefGoogle Scholar
  198. Stull DR (1947) Vapor pressure of pure substances. organic and inorganic compounds. Ind Eng Chem 39:517–540.  https://doi.org/10.1021/ie50448a022 CrossRefGoogle Scholar
  199. Tegel M et al (2008) Structural and magnetic phase transitions in the ternary iron arsenides SrFe2As2 and EuFe2As2. J Phys Cond Matter 20(45):452201.  https://doi.org/10.1088/0953-8984/20/45/452201 CrossRefGoogle Scholar
  200. Teller H et al (2015) Ruthenium phosphide synthesis and electroactivity toward oxygen reduction in acid solutions. ACS Catal 5(7):4260–4267.  https://doi.org/10.1021/acscatal.5b00880 CrossRefGoogle Scholar
  201. Thiele G, Woditsch P (1969) Neutronenbeugungsuntersuchungen am Osmium(IV)-oxid. J Less Comm Met 17(4):459.  https://doi.org/10.1016/0022-5088(69)90074-5 CrossRefGoogle Scholar
  202. Tian Y et al (2008) Structure and mechanical properties of osmium carbide: first-principles calculations. Appl Phys Lett 93:041904.  https://doi.org/10.1063/1.2964179 CrossRefGoogle Scholar
  203. Traa Y, Weitkamp J (1998) Kinetik der Methanisierung von Kohlendioxid an Ruthenium auf Titandioxid. Chem Ing Tech 70(11):1428–1430CrossRefGoogle Scholar
  204. Van Rheenen V et al (1978) Catalytic osmium tetroxide oxidation of olefins: Cis-1,2-Cyclohexanediol. Org Synth 58:43CrossRefGoogle Scholar
  205. Volkmer M (1996) Basiswissen Kernenergie. Informationskreis Kernenergie, Bonn, S 80. ISBN 3-925986-09-XGoogle Scholar
  206. Wehlte K (1967) Werkstoffe und Techniken der Malerei. Otto Maier, Ravensburg, S 113. ISBN 3-473-48359-1Google Scholar
  207. Wells AF (1975) Structural inorganic chemistry, 4. Aufl. Clarendon Press, Oxford, UKGoogle Scholar
  208. Widdel F et al (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836CrossRefGoogle Scholar
  209. Wildermuth E et al (2000) Iron compounds. In: Elvers B (Hrsg) Ullmann’s encyclopedia of industrial chemistry. Wiley VCH, Weinheim, S 41–62Google Scholar
  210. Wildermuth E et al (2012) Iron Compounds. In: Ullmanns Enzyklopädie der Technischen Chemie. Wiley-VCH, Weinheim.  https://doi.org/10.1002/14356007.a14_591 CrossRefGoogle Scholar
  211. Winter G (1973) Iron(II) halides. In: Wold A, Ruff JK (Hrsg) Inorganic syntheses, Bd 14. McGraw-Hill, New York, S 101–104. ISBN 07-071320-0Google Scholar
  212. Woodward RB et al (1952) A new aromatic system. J Am Chem Soc 74(13):3458–3459.  https://doi.org/10.1021/ja01133a543 CrossRefGoogle Scholar
  213. Xie Z et al (2014) Thermal stability of hexagonal OsB2. J Sol State Chem 219:210–219.  https://doi.org/10.1016/j.jssc.2014.07.035 CrossRefGoogle Scholar
  214. Yen P (2004) Growth and characterization of OsO2 single crystals. J Cryst Growth 262(1–4):271.  https://doi.org/10.1016/j.jcrysgro.2003.10.021 CrossRefGoogle Scholar
  215. Zhang C et al (2015) Prediction of stable ruthenium silicides from first-principles calculations: stoichiometries, crystal structures, and physical properties. ACS Appl Mater Interf 7(48):26776–26782.  https://doi.org/10.1021/acsami.5b08807 CrossRefGoogle Scholar
  216. Zhang Y et al (2016) Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction. Sci Rep 6:33506.  https://doi.org/10.1038/srep33506 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Zhdanova OV et al (2013) Magnetic Properties and Domain Structure of FeB Single Crystals. Met Sci Heat Treat 55(1–2):68–72.  https://doi.org/10.1007/s11041-013-9581-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.LANXESS Deutschland GmbHLeverkusenDeutschland

Personalised recommendations