Encyclopedia of Continuum Mechanics

Editors: Holm Altenbach, Andreas Öchsner

Morphological Models

Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_70-1

Synonyms

Definition

Morphological models are probabilistic models of random media developed in mathematical morphology, identified from their morphological properties, and enabling the simulation and the prediction of the physical behavior of complex and multiscale media.

Introduction

Real materials are intrinsically heterogeneous and therefore show more or less controlled fluctuations in their behavior. To deal with this fact, it is useful to pursue a probabilistic approach, which enables us to generate models and simulations of the microstructures. Realistic models are designed from the observation of microstructures and from identification by means of pertinent morphological data, as explained later. Once a relevant model is available to describe some heterogeneous medium, it can be used to predict its physical properties and their...

This is a preview of subscription content, log in to check access

References

  1. Abdallah B, Willot F, Jeulin D (2015) Stokes flow through a Boolean model of spheres: representative volume element. Transp Porous Media 109(3):711–726Google Scholar
  2. Altendorf H, Jeulin D, Willot F (2014a) Influence of the fiber geometry on the macroscopic elastic and thermal properties. Int J Solids Struct 51(23):3807–3822Google Scholar
  3. Altendorf H, Latourte F, Jeulin D, Faessel M, Saintoyant L (2014b) 3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal Stereology 33(2):121–130Google Scholar
  4. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30(7):3933–3943Google Scholar
  5. Bretheau T, Jeulin D (1989) Caractéristiques morphologiques des constituants et comportement élastique d’un matériau biphasé Fe/Ag. Revue Phys Appl 24:861–869Google Scholar
  6. Cailletaud G, Jeulin D, Rolland P (1994) Size effect on elastic properties of random composites. Eng Comput 11(2):99–110Google Scholar
  7. Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications. Wiley, ChichesterGoogle Scholar
  8. Dirrenberger J, Forest S, Jeulin D (2014) Towards gigantic RVE sizes for 3D stochastic fibrous networks. Int J Solids Struct 51(2):359–376Google Scholar
  9. Escoda J, Jeulin D, Willot F, Toulemonde C (2015) Three-dimensional morphological modelling of concrete using multiscale Poisson polyhedra. J Microsc 258(1):31–48Google Scholar
  10. Escoda J, Willot F, Jeulin D, Sanahuja J, Toulemonde C (2016) Influence of the multiscale distribution of particles on elastic properties of concrete. Int J Eng Sci 98:60–71Google Scholar
  11. Eyre DJ, Milton GW (1999) A fast numerical scheme for computing the response of composites using grid refinement. Eur Phys J Appl Phys 6:41–47Google Scholar
  12. Figliuzzi B, Jeulin D, Faessel M, Willot F, Koishi M, Kowatari N (2016) Modelling the microstructure and the viscoelastic behaviour of carbon black filled rubber materials from 3D simulations. Technische Mechanik 32(1–2):22–46Google Scholar
  13. Gasnier JB, Willot F, Trumel H, Figliuzzi B, Jeulin D, Biessy M (2015) A Fourier-based numerical homogenization tool for an explosive material. Matériaux & Techniques 103(3):308Google Scholar
  14. Jean A, Jeulin D, Forest S, Cantournet S, N’Guyen F (2011) A multiscale microstructure model of carbon black distribution in rubber. J Microsc 241(3):243–260Google Scholar
  15. Jeulin D (1991a) Modèles Morphologiques de Structures Aléatoires et de Changement d’Echelle, Thèse de Doctorat d’Etat ès Sciences Physiques, Université of CaenGoogle Scholar
  16. Jeulin D (1991b) Modèles de Fonctions Aléatoires multivariables. Sci Terre 30:225–256Google Scholar
  17. Jeulin D (1994). Fracture statistics models and crack propagation in random media. Appl Mech Rev 47(1):141–150Google Scholar
  18. Jeulin D (2000) Random texture models for materials structures. Stat Comput 10:121Google Scholar
  19. Jeulin D (2001) Random structure models for homogenization and fracture statistics. In: Jeulin D, Ostoja-Starzewski M (eds) Mechanics of random and multiscale microstructures. Springer, Berlin, p 33Google Scholar
  20. Jeulin D (2005) Random structures in physics. In: Bilodeau M, Meyer F, Schmitt M (eds) Space, structure and randomness. Lecture notes in statistics, vol 183. Springer, Berlin, p 183Google Scholar
  21. Jeulin D (2009) Multi scale random models of complex microstructures. In: Chandra T, Wanderka N, Reimers W, Ionescu M (eds) Thermec 2009. Materials science forum, vol 638–642, pp 81–86Google Scholar
  22. Jeulin D (2010) Analysis and modeling of 3D microstructures, chapter 19. In: Talbot H, Najman L (eds) Mathematical morphology: from theory to applications. ISTE/Wiley, New YorkGoogle Scholar
  23. Jeulin D (2012) Morphology and effective properties of multi-scale random sets: a review. Comptes rendus de l’Académie des Sciences, Paris 240(4–5):219–229.  https://doi.org/10.1016/j.crme.2012.02.004 Google Scholar
  24. Jeulin D (2014) Random tessellations generated by Boolean random functions. Pattern Recogn Lett 47:139–146CrossRefGoogle Scholar
  25. Jeulin D (2015a) Boolean random functions. In: Schmidt V (ed) Stochastic geometry, spatial statistics and random fields. Springer International Publishing, Cham, pp 143–169Google Scholar
  26. Jeulin D (2015b) Power laws variance scaling of Boolean random varieties. Methodol Comput Appl Probab Rn 7:3Google Scholar
  27. Jeulin D (2016) Iterated Boolean random varieties and application to fracture statistics models. Appl Math 61(4):363–386MathSciNetCrossRefMATHGoogle Scholar
  28. Jeulin D, Jeulin P (1981) Synthesis of rough surfaces by random morphological models. Proc 3rd Eur Symp Stereology Stereol Iugosl 3(suppl 1):239–246Google Scholar
  29. Jeulin D, Moreaud M (2005) Multi-scale simulation of random spheres aggregates-Application to nanocomposites. In: Chraponski J, Cwajna J, Wojnar L (eds) Proceedings of the 9th European congress on stereology and image analysis, Zakopane, vol 1, pp 341–348Google Scholar
  30. Jeulin D, Moreaud M (2006a) Percolation d’agrégats multi-é chelles de sphères et de fibres: application aux nanocomposites. In: Proceeding of Matériaux, DijonGoogle Scholar
  31. Jeulin D, Moreaud M (2006b) Percolation of multi-scale fiber aggregates. In: Lechnerova R, Saxl I, Benes V (eds) Proceedings of the S4G, 6th international conference stereology, spatial statistics and stochastic geometry, Prague, 26–29 June 2006. Union Czech Mathematicians and Physicists, pp 269–274Google Scholar
  32. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Sol Str 40:3647–3679CrossRefMATHGoogle Scholar
  33. Matheron G (1967) Eléments pour une théorie des milieux poreux. Masson, ParisGoogle Scholar
  34. Matheron G (1969) Théorie des ensembles aléatoires, Cahiers du Centre de Morphologie Mathématique, fasc. 4, edited by Paris School of MinesGoogle Scholar
  35. Matheron G (1971) The theory of regionalized variables and its applications. Paris School of Mines publications, ParisGoogle Scholar
  36. Matheron G (1975) Random sets and integral geometry. Wiley, New YorkMATHGoogle Scholar
  37. Mecke K, Stoyan D (2005) The Boolean model: from Matheron till today. In: Bilodeau M, Meyer F, Schmitt M (eds) Space, structure and randomness. Lecture notes in statistics, vol 183. Springer, Berlin, pp 151–182CrossRefGoogle Scholar
  38. Milton GW (1982) Bounds on the elastic and transport properties of two-component composites. J Mech Phys Solids 30:177–191MathSciNetCrossRefMATHGoogle Scholar
  39. Milton GW (1986) Modeling the properties of composites by laminates. In: Ericksen JL, Kinderlehrer D, Kohn R, Lions JL (eds) Homogenization and effective moduli of materials and media. Springer, Berlin, pp 150–174CrossRefGoogle Scholar
  40. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94MathSciNetCrossRefMATHGoogle Scholar
  41. Paciornik S, Gomes OFM, Delarue A, Schamm S, Jeulin D, Thorel A (2003) Multi-scale analysis of the dielectric properties and structure of resin/carbon-black nanocomposites. E P J Appl Phys 21:17–26CrossRefGoogle Scholar
  42. Rintoul M, Torquato S (1997) Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model. J Phys A Math Gen 30:L585–L592CrossRefMATHGoogle Scholar
  43. Savary L, Jeulin D, Thorel A (1999) Morphological analysis of carbon-polymer composite materials from thick sections. Acta Stereol 18(3):297–303Google Scholar
  44. Serra J (1982) Image analysis and mathematical morphology. Academic Press, LondonMATHGoogle Scholar
  45. Serra J (ed) (1988) Image analysis and mathematical morphology, vol 2. Academic Press, LondonGoogle Scholar
  46. Serra J (1989) Boolean random functions. J Microsc 156(1):41–63MathSciNetCrossRefGoogle Scholar
  47. Wang H, Pietrasanta A, Jeulin D, Willot F, Faessel M, Sorbier L, Moreaud M (2015) Modelling mesoporous alumina microstructure with 3D random models of platelets. J Microsc 260(3):287–301CrossRefGoogle Scholar
  48. Wang H, Willot F, Moreaud M, Rivallan M, Sorbier L, Jeulin D (2017) Numerical simulation of Hindered diffusion in γ-alumina catalyst supports. Oil Gas Sci Technol–Revue d’IFP Energies nouvelles 72(2):8CrossRefGoogle Scholar
  49. Willot F, Jeulin D (2009) Elastic behavior of composites containing Boolean random sets of inhomogeneities. Int J Eng Sci 47:313–324MathSciNetCrossRefMATHGoogle Scholar
  50. Willot F, Jeulin D (2011) Elastic and electrical behavior of some random multiscale highly contrasted composites. Int J Multiscale Comput Eng 9(3):305–326CrossRefGoogle Scholar
  51. Willot F, Abdallah B, Jeulin D (2016) The permeability of Boolean sets of cylinders. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 71(4):52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Center for Mathematical Morphology, MINES ParistechPSL Research UniversityFontainebleauFrance

Section editors and affiliations

  • Martin Ostoja-Starzewski
    • 1
  1. 1.Department of Mechanical Science & Engineering, Institute for Condensed Matter Theory and Beckman InstituteUniversity of Illinois at Urbana–ChampaignUrbanaUSA