Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Modeling of Bone Adaption Processes

  • Udo NackenhorstEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_33-1


Bone adaption; Bone remodeling; Stress shielding


A new paradigm is stated in order to push mechanically driven bone adaption simulations into clinical practice. Low-parametrized 3D modeling approaches are needed which describe the essential phenomena in a sufficient manner. Furthermore, suitable techniques for the determination of patient individual model parameters and boundary conditions are necessary. In this paper a low-parametrized simple bone remodeling theory is outlined in the framework of thermodynamic consistent constitutive theory of materials. Furthermore a goal-oriented strategy for patient individual modeling is outlined.


Bones are living organs which adapt themselves to their mechanical demand. In adults under usual activity, bone is continuously maintained by the cellular activity; however for a longer resting time or low-gravity environment, a significant loss of bone mass happens, whereas bone mass increases when the physical activity...

This is a preview of subscription content, log in to check access.



This work has been supported by several grants from the German Research Foundation within the framework of GRK 615 and under contracts DFG-NA330-6 and DFG-NA330-8. We express our gratitude for that funding.


  1. Ackermann MJ (1999) The visible human project: a resource for education. Acad Med 74(6):667–670CrossRefGoogle Scholar
  2. Austmann RL, Milner JA, Holdsworth DW, Dunning CE (2008) The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone. J Biomech 41:3171–3176CrossRefGoogle Scholar
  3. Beaupré G, Orr T, Carter D (1990) An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling simulation. J Orthop Res 8(5):662–670CrossRefGoogle Scholar
  4. Bergmann G, Bender A, Dymke J, Duda G, Damm P (2016) Standardized loads acting in hip implants. Plos one. https://doi.org/10.1371/journal.pone.0155612
  5. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35:268–308CrossRefGoogle Scholar
  6. Braun A, Sabah A (2009) Zwei-Jahres-Ergebnisse einer modularen Kurzschaft-Hftendoprothese. Z Orthop Unfall 147:700–706CrossRefGoogle Scholar
  7. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18(3):189–200CrossRefGoogle Scholar
  8. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 59:954–962CrossRefGoogle Scholar
  9. Carter D, Orr T, Fyhrie D (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22(3):231–244CrossRefGoogle Scholar
  10. Doblaré M, Garcıa J (2001) Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J Biomech 34(9):1157–1170CrossRefGoogle Scholar
  11. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700CrossRefGoogle Scholar
  12. Floerkemeier T, Gronewold J, Berner S (2013) The influence on resection hight on proximal femoral strain patterns after Metha short stem hip arthropasty. Int Orthop 37(3):369–377Google Scholar
  13. Frost HM (1987) Bone mass and the mechanostat: a proposal. Anat Rec 219:1–9Google Scholar
  14. Frost HM (1998) From wolff’s law to the mechanostat: a new face of physiology. J Orthop Sci 3:282–286Google Scholar
  15. Gomez-Benito MJ, Garcia-Aznar JM, Doblare M (2005) Finite element prediction of proximal femoral fracture patterns under different loads. J Biomech Eng 127: 9–14Google Scholar
  16. Hambli R (2014) Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol 2(6):1–12Google Scholar
  17. Jacobs CR, Levenston ME, Beaupre GS, Simo JC, Carter DR (1995) Numerical instabilities in bone remodeling simulations: the advantage of a node-based finite element approach. J Biomech 28:449–459CrossRefGoogle Scholar
  18. Kastl S, Sommer T, Klein P, Hohenberger W, Engelke K (2002) Accuracy and precision of bone mineral density and bone mineral content in excised rat humeri using fan beam dual-energy x-ray absorptiometry. Bone 30(1):243–246CrossRefGoogle Scholar
  19. Krstin N, Nackenhorst U, Lammering R (2000) Zur konstitutiven beschreibung des anisotropen beanspruchungsadaptiven knochenumbaus. Technische Mechanik 20(1):31–40Google Scholar
  20. Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Methods Eng 58(11):1593–1615MathSciNetCrossRefGoogle Scholar
  21. Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press, CambridgeGoogle Scholar
  22. von Lewinski G, Flörkemeier T (2015) 10-year experience with short stem total hip arthropasty. Orthopedics 38(3):51–56Google Scholar
  23. Lutz A (2011) Ein integrales modellierungskonzept zur numerischen simulation der osseointegration und langzeitstabilität von endoprothesen. PhD thesis, Institut für Baumechanik und Numerische Mechanik, Leibniz Universität HannoverGoogle Scholar
  24. Lutz A, Nackenhorst U (2009) A computational approach on the osseointegration of bone implants based on a bio-active interface theory. GAMM-Mitteilungen 32(2):178MathSciNetCrossRefGoogle Scholar
  25. Lutz A, Nackenhorst U (2010) Numerical investigations on the biomechanical compatibility of hip-joint endoprostheses. Arch Appl Mech 80(5):503–512CrossRefGoogle Scholar
  26. Lutz A, Nackenhorst U (2012) Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory. Comput Mech 50(3):367–381MathSciNetCrossRefGoogle Scholar
  27. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationship depend on anatomic site. J Biomech 36:897–904CrossRefGoogle Scholar
  28. Mullender M, Haj AJE, Yang Y, van Duin MA, Burger EH, Klein-Nulend J (2004) Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med Biol Eng Comput 42(1):14–21CrossRefGoogle Scholar
  29. Nackenhorst U (1997) Numerical simulation of stress stimulated bone remodeling. Tech Mech 17(1):31–40Google Scholar
  30. Nackenhorst U, Krstin N, Lammering R (2000) A constitutive law for anisotropic stress adaptive bone remodeling. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 80(S2):399–400CrossRefGoogle Scholar
  31. O’Connor J, Borges LMA, Duda FP, da Cruz AGB (2016) Bone density growth. Biomechanics of healthy and prosthetic femur after a total hip arthroplasty. In: Proceedings of XXXVII Latin-American congress on computational methods in engineering (CILAMCE 2016)Google Scholar
  32. Prendergast PJ (1997) Finite element models in tissue mechanics and orthoportho implant design. Clin Biomech 12(6):343–366Google Scholar
  33. Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on appearent density. J Biomech 21:155–168CrossRefGoogle Scholar
  34. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498CrossRefGoogle Scholar
  35. Sarkalkan N, Weinans H, Sadpoor AA (2014) Statistical shape and appearence models of bones. Bone 60: 129–140CrossRefGoogle Scholar
  36. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH (1998) Timing and loading effect on micromotion on dental implant interface: review of experimental literature. J Biomed Mater Res 43:192–203Google Scholar
  37. Verborgt O, Gibson GJ, Schaffler MB (2000) Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 14(1):60–67CrossRefGoogle Scholar
  38. Viceconti M, Casali M, Massari B, Christofolini L, Bassini S, Toni A (1996) The ‘standardized femur program’ proposal for a reference geometry to be used for the creation of finite element models of the femur. J Biomech 29(9):1241CrossRefGoogle Scholar
  39. Viceconti M, Ansaloni M, Baleani M, Toni A (2003) The muscle standardized femur: a step forward in the replication of numerical studies in biomechanics. Proc Instn Mech Engrs Part H J Eng Med 217:105–110CrossRefGoogle Scholar
  40. Webster D, Müller R (2011) In silico models of bone remodeling fram macro to nano – from organ to cell. WIREs Syst Biol Med 3(2):241–251Google Scholar
  41. Weinans H, Huiskes R, Grootenboer H (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25(12):1425–1441CrossRefGoogle Scholar
  42. Wolff J (1982) Das Gesetz der Transformation der Knochen. HirschwaldGoogle Scholar
  43. Yagiura M, Ibaraki T (2001) On metaheuristic algorithms for combinatorial optimization problems. Syst Comput Jpn 32:33–55CrossRefGoogle Scholar
  44. Zysset PK, Curnier A (1996) A 3D damage model for trabecular bone based on fabric tensors. J Biomech 29(12):1549–1558CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz University HannoverHannoverGermany

Section editors and affiliations

  • Daniel Balzani
    • 1
  1. 1.Chair of Continuum MechanicsRuhr-University-BochumBochumGermany