Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

History of Plasticity

  • Otto T. BruhnsEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_281-1



The theory of plasticity is an area of continuum mechanics that deals with the irreversible, i.e., permanent, deformations of solid bodies. It describes the state of stress and strain or strain rate in these bodies under the influence of a given load or deformation. This complements the theory of elasticity, which describes the reversible behavior of solid bodies. In practice it is observed that many materials behave elastic up to a certain load limit but then beyond this limit increasingly plastic or fluid-like. This limit is called the yield limit. The combination of both material behaviors is called elastoplasticity.

The classical elastoplastic material behavior is assumed to be time-independent or rate-independent. In contrast to this, we call a time- or rate-dependent behavior visco-elastoplastic and visco-plastic – if the elastic part of the deformation is neglected.

In the theory of plasticity and...

This is a preview of subscription content, log in to check access.


  1. Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial Bauschinger effect. Technical Report RD/B/N 731, GEGBGoogle Scholar
  2. Avitzur B (1968) Metal forming: processes and analysis. McGraw-Hill, New YorkGoogle Scholar
  3. Backman ME (1964) Form for the relation between stress and finite elastic and plastic strains under impulsive loading. J Appl Phys 35:2524–2533CrossRefGoogle Scholar
  4. Becker GF (1893) The finite elastic stress-strain function. Am J Sci 46:337–356CrossRefGoogle Scholar
  5. Bell JF, Khan AS (1980) Finite plastic strain in annealed copper during non-proportional loading. Int J Solids Struct 16:683–693CrossRefGoogle Scholar
  6. Bernstein B (1960) Hypo-elasticity and elasticity. Arch Rat Mech Anal 6:90–104MathSciNetzbMATHGoogle Scholar
  7. Bertram A (2005) Elasticity and plasticity of large deformations: an introduction. Springer, BerlinzbMATHGoogle Scholar
  8. Bilby BA, Gardner LRT, Stroh AN (1957) Continuous distributions of dislocations and the theory of plasticity. In: Extrait des Actes du IXe Congrès Intern. de Mécanique Applicqueé, Bruxelles, pp 35–44Google Scholar
  9. Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New YorkGoogle Scholar
  10. Boas W, Schmid E (1930) Über die Temperaturabhängigkeit der Kristallplastizität. Z Physik A 61: 767–781CrossRefGoogle Scholar
  11. Böck N, Holzapfel GA (2004) A new two-point deformation tensor and its relation to the classical kinematical framework and the stress concept. Int J Solids Struct 41:7459–7469MathSciNetzbMATHCrossRefGoogle Scholar
  12. Boecke B, Link F, Schneider G, Bruhns OT (1982) New constitutive equations to describe infinitesimal elastic-plastic deformations. In: Proceedings of 2nd century PVP conference, Orlando, ASME 82-PVP-71, pp 1–6Google Scholar
  13. Bridgman PW (1964) Studies in large plastic flow and fracture. Harvard University Press, CambridgeCrossRefGoogle Scholar
  14. Bruhns C (1920) Neues logarithmisch-trigonometrisches Handbuch auf sieben Decimalen, 13th edn. Bernhard Tauchnitz, LeipzigzbMATHGoogle Scholar
  15. Bruhns O, Lehmann T (1979) Optimum deformation rate in large inelastic deformations. In: Lippmann H (ed) Metal forming plasticity. Springer, Berlin, pp 120–138CrossRefGoogle Scholar
  16. Bruhns OT (1984) On constitutive modelling of the inelastic behaviour of austenitic steel. In: Advanced technology of plasticity. Proceeding of 1st international conference on technology of plasticity, Tokyo. vol 1, pp 90–95Google Scholar
  17. Bruhns OT (2003) Advanced mechanics of solids. Springer, BerlinCrossRefGoogle Scholar
  18. Bruhns OT (2014a) The Prandtl-Reuss equations revisited. Z Angew Math Mech 94:187–202MathSciNetzbMATHCrossRefGoogle Scholar
  19. Bruhns OT (2014b) Some remarks on the history of plasticity – Heinrich Hencky, a pioneer of the early years. In: Stein E (ed) The history of theoretical, material and computational mechanics – mathematics meets mechanics and engineering. Springer, Berlin/Heidelberg, pp 133–152CrossRefGoogle Scholar
  20. Bruhns OT, Xiao H, Meyers A (2001) Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc R Soc Lond A 457:2207–2226MathSciNetzbMATHCrossRefGoogle Scholar
  21. Bruhns OT, Meyers A, Xiao H (2004) On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc R Soc Lond A 460: 909–928MathSciNetzbMATHCrossRefGoogle Scholar
  22. Burgers JM (1939) Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. In: Proceeding of section of science, vol 42. Koninklijke Nederlandse Akademie van Wetenschappen, Noordwijkerhout, pp 293–325, 378–399Google Scholar
  23. Carathéodory C, Schmidt E (1923) Über die Hencky-Prandtlschen Kurven. Z angew Math Mech 3:468–475zbMATHCrossRefGoogle Scholar
  24. Carlson DE, Hoger A (1986) The derivative of a tensor-valued function of a tensor. Qart Appl Math 44: 409–423MathSciNetzbMATHCrossRefGoogle Scholar
  25. Casey J, Naghdi PM (1980) A remark on the use of the decomposition F = F e F p in plasticity. J Appl Mech 47:672–675zbMATHCrossRefGoogle Scholar
  26. Casey J, Naghdi PM (1981) Discussion of Lubarda and Lee (1981), cited below. J Appl Mech 48:983–984CrossRefGoogle Scholar
  27. Casey J, Naghdi PM (1983) On the use of invariance requirements for intermediate configurations associated with the polar decomposition of a deformation gradient. Quart Appl Math 41:339–342MathSciNetzbMATHCrossRefGoogle Scholar
  28. Cattaneo C (1958) Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. CR Acad Sci Paris 247:431–433zbMATHGoogle Scholar
  29. Cauchy AL (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomat. 9–13Google Scholar
  30. Clayton JD, McDowell DL (2003) A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int J Plast 19:1401–1444zbMATHCrossRefGoogle Scholar
  31. Collins IF (2005) Elastic/plastic models for soils and sands. Int J Mech Sci 47:493–508zbMATHCrossRefGoogle Scholar
  32. Considère A (1889) Résistance des pièces comprimées. Congr Int des Procédés de Constr 3:371Google Scholar
  33. Cotter BA, Rivlin RS (1955) Tensors associated with time-dependent stress. Quart Appl Math 13:177–182MathSciNetzbMATHCrossRefGoogle Scholar
  34. Coulomb C (1773) Essai sur une application des règles de maximis et minimis à quelques problèmes de statique. Mém de Math et Phys 7:343–382Google Scholar
  35. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49:1–23MathSciNetzbMATHCrossRefGoogle Scholar
  36. Darijani H, Naghdabadi R (2010) Constitutive modeling of solids at finite deformation using a second-order stress-strain relation. Int J Eng Sci 48:223–236CrossRefGoogle Scholar
  37. Dashner PA (1986) Invariance considerations in large strain elasto-plasticity. J Appl Mech 53:55–60zbMATHCrossRefGoogle Scholar
  38. Dienes JK (1979) On the analysis of rotation and stress rate in deforming bodies. Acta Mech 32:217–232MathSciNetzbMATHCrossRefGoogle Scholar
  39. Doyle TC, Ericksen JL (1956) Nonlinear elasticity. Adv Appl Mech 4:53–115MathSciNetCrossRefGoogle Scholar
  40. Drucker DC (1949) The significance of the criterion for additional plastic deformation of metals. J Colloid Sci 4:299–311CrossRefGoogle Scholar
  41. Drucker DC (1950) Some implications of work hardening and ideal plasticity. Quart Appl Math 7:411–418MathSciNetzbMATHCrossRefGoogle Scholar
  42. Eckart C (1948) The thermodynamics of irreversible processes. IV: the theory of elasticity and anelasticity. Phys Rev 73:373–382MathSciNetzbMATHCrossRefGoogle Scholar
  43. Edelman F, Drucker DC (1951) Some extensions of elementary plasticity theory. J Franklin Inst 251:581–605MathSciNetCrossRefGoogle Scholar
  44. Eglit ME (1960) Tensorial characteristics of finite deformations. Prikl Mat Mekh 24:1432–1438zbMATHGoogle Scholar
  45. Engesser F (1889) Über die Knickfestigkeit gerader Stäbe. Z Arch Ing-Ver 35:455zbMATHGoogle Scholar
  46. Engesser F (1895) Über Knickfragen. Schweiz Bauzeitung 26:24–26Google Scholar
  47. Fitzgerald S (1980) A tensorial Hencky measure of strain and strain rate for finite deformation. J Appl Phys 51:5111–5115CrossRefGoogle Scholar
  48. Fox N (1968) On the continuum theories of dislocations and plasticity. Quart J Mech Appl Math 21:67–75zbMATHCrossRefGoogle Scholar
  49. Freund LB (1970) Constitutive equations for elastic-plastic materials at finite strain. Int J Solids Struct 6:1193–1209zbMATHCrossRefGoogle Scholar
  50. Fromm H (1933) Stoffgesetze des isotropen Kontinuums, insbesondere bei zähplastischem Verhalten. Ing-Arch 4:432–466zbMATHCrossRefGoogle Scholar
  51. Geiringer H (1930) Beitrag zum vollständigen ebenen Plastizitätsproblem. In: Proceedings of 3rd international congress of applied mechanics, vol 2, Stockholm. pp 185–190Google Scholar
  52. Geiringer H (1937) Fondements mathématiques de la théorie des corps plastiques isotropes. Mémorial des sciences mathematiques, vol 86. Gauthier-Villars, Paris, pp 1–89Google Scholar
  53. Geiringer H, Prager W (1934) Mechanik isotroper Körper im plastischen Zustand. Ergebn exakt Naturwiss 13:310–363zbMATHGoogle Scholar
  54. von Göler V, Sachs G (1927) Das Verhalten von Aluminiumkristallen bei Zugversuchen, I. Geometrische Grundlagen. Z Physik, A 41:103–115Google Scholar
  55. Green AE (1956) Hypo-elasticity and plasticity. Proc R Soc Lond A 234:46–59MathSciNetzbMATHCrossRefGoogle Scholar
  56. Green AE, McInnis BC (1967) Generalized hypo-elasticity. Proc R Soc Edinb A 67:220–230MathSciNetzbMATHGoogle Scholar
  57. Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Arch Rat Mech Anal 18:251–281; corrigenda 19, 408MathSciNetzbMATHCrossRefGoogle Scholar
  58. Green AE, Naghdi PM (1971) Some remarks on elastic-plastic deformation at finite strain. Int J Eng Sci 9:1219–1229zbMATHCrossRefGoogle Scholar
  59. Green AP (1951) The compression of a ductile material between smooth dies. Phil Mag 42:900–918CrossRefGoogle Scholar
  60. Green AP (1953) The plastic yielding of notched bars due to bending. Quart J Mech Appl Math 6:223–239MathSciNetCrossRefGoogle Scholar
  61. Green AP (1954) On the use of hodographs in problems of plane plastic strain. J Mech Phys Solids 2:73–80MathSciNetCrossRefGoogle Scholar
  62. Greenberg HJ (1949) Complementary minimum principles for an elastic-plasticity material. Quart Appl Math 7:85–95MathSciNetzbMATHCrossRefGoogle Scholar
  63. Gurtin ME, Spear K (1983) On the relationship between the logarithmic strain rate and the stretching tensor. Int J Solids Struct 19:437–444MathSciNetzbMATHCrossRefGoogle Scholar
  64. Haar A, von Kármán T (1909) Zur Theorie der Spannungszustände in plastischen und sandartigen Medien. In: Nachr. Königl. Ges. Wiss., Math. Phys. Kl., Göttingen, pp 204–218zbMATHGoogle Scholar
  65. Hamilton W (1847) The hodograph, or a new method of expressing in symbolical language the Newtonian law of attraction. Proc R Irish Acad 3:344–353Google Scholar
  66. Haupt P (1985) On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behavior. Int J Plast 1:303–316zbMATHCrossRefGoogle Scholar
  67. Haupt P (2002) Continuum mechanics and theory of materials, 2nd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  68. Hayes DJ, Marcal PV (1967) Determination of upper bounds for problems in plane stress using finite element techniques. Int J Mech Sci 9:245–251zbMATHCrossRefGoogle Scholar
  69. Hencky H (1923) Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern. Z Angew Math Mech 3:241–251zbMATHCrossRefGoogle Scholar
  70. Hencky H (1924) Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Z Angew Math Mech 4:323–335zbMATHCrossRefGoogle Scholar
  71. Hencky H (1925a) Die Bewegungsgleichungen beim nichtstationären Fließen plastischer Massen. Z angew Math Mech 5:144–146zbMATHGoogle Scholar
  72. Hencky H (1925b) Über langsame stationäre Strömungen in plastischen Massen mit Rücksicht auf die Vorgänge beim Walzen, Pressen und Ziehen von Metallen. Z Angew Math Mech 5:115–124zbMATHGoogle Scholar
  73. Hencky H (1928) Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z Techn Phys 9: 215–223zbMATHGoogle Scholar
  74. Hencky H (1929) Das Superpositionsgesetz eines endlich deformierten relaxationsfähigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form. Ann Physik 5:617–630zbMATHCrossRefGoogle Scholar
  75. Hencky H (1931) The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. J Rheol 2:169–176CrossRefGoogle Scholar
  76. Hencky H (1932) A simple model explaining the hardening effect in polycrystalline metals. J Rheol 3:30–36CrossRefGoogle Scholar
  77. Hill R (1948) A variational principle of maximum plastic work in classical plasticity. Quart J Mech Appl Math 1:18–28MathSciNetzbMATHCrossRefGoogle Scholar
  78. Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordzbMATHGoogle Scholar
  79. Hill R (1959) Some basic principles in the mechanics of solids without a natural time. J Mech Phys Solids 7:209–225MathSciNetzbMATHCrossRefGoogle Scholar
  80. Hill R (1968) On constitutive inequalities for simple materials. J Mech Phys Solids 16:229–242, 315–322zbMATHCrossRefGoogle Scholar
  81. Hill R (1970) Constitutive inequalities for isotropic elastic solids under finite strain. Proc R Soc Lond A 314:457–472zbMATHCrossRefGoogle Scholar
  82. Hill R (1978) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1–75MathSciNetzbMATHGoogle Scholar
  83. Hill R, Rice JR (1973) Elastic potentials and the structure of inelastic constitutive laws. SIAM J Appl Math 25:448–461zbMATHCrossRefGoogle Scholar
  84. Hill R, Rice JR (1987) Discussion: a rate-independent constitutive theory for finite inelastic deformation (Carroll (1987) J Appl Mech 54:15–21). J Appl Mech 54:745–747CrossRefGoogle Scholar
  85. Hodge PG, Prager W (1948) A variational principle for plastic materials with strain-hardening. J Math Phys 27:1–10MathSciNetzbMATHCrossRefGoogle Scholar
  86. Hodge PG, White GN (1950) A qualitative comparison of flow and deformation theories of plasticity. J Appl Mech 17:180–184MathSciNetzbMATHGoogle Scholar
  87. Hoff NJ (ed) (1962) Creep in structures. Springer, Berlin/Heidelberg/New YorkzbMATHGoogle Scholar
  88. Hoger A (1986) The material time derivative of logarithmic strain. Int J Solids Struct 22:1019–1032MathSciNetzbMATHCrossRefGoogle Scholar
  89. Hoger A (1987) The stress conjugate to logarithmic strain. Int J Solids Struct 23:1645–1656MathSciNetzbMATHCrossRefGoogle Scholar
  90. Hohenemser K (1931) Elastisch-bildsame Verformungen statisch unbestimmter Stabwerke. Ing-Archiv 2: 472–482zbMATHCrossRefGoogle Scholar
  91. Hohenemser K, Prager W (1932a) Beitrag zur Mechanik des bildsamen Verhaltens von Flußstahl. Z angew Math Mech 12:1–14zbMATHCrossRefGoogle Scholar
  92. Hohenemser K, Prager W (1932b) Fundamental equations and definitions concerning the mechanics of isotropic continua. J Rheol 3:16–22zbMATHCrossRefGoogle Scholar
  93. Hooke R (1678) Lectures de potentia restitutiva, or of spring explaining the power of springing bodies. The Royal Society, LondonGoogle Scholar
  94. Horstemeyer MF, Bammann DJ (2010) Historical review of internal state variable theory for inelasticity. Int J Plast 26:1310–1334zbMATHCrossRefGoogle Scholar
  95. Houlsby GT, Puzrin AM (2000) A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int J Plast 16:1017–1047zbMATHCrossRefGoogle Scholar
  96. Hrennikoff A (1941) Solution of problems of elasticity by the framework method. J Appl Mech 8:169–175MathSciNetzbMATHGoogle Scholar
  97. Huber MT (1904) Właściwa praca odkształcenia jako miara wyteżenia materiału. Czasopismo Techniczne (Lwów-Lemberg) 22:38–40, 49–50, 61–62, 80–81Google Scholar
  98. Ilyushin AA (1945) Relation between the theory of Saint Venant-Lévy-Mises and the theory of small elastic-plastic deformations (in Russia). Prikl Mat Mekh 9:207–218Google Scholar
  99. Jasinski F (1894) Recherches sur la flexion des pièces comprimées. Ann Ponts Chaussées 8:233, 654Google Scholar
  100. Jasinski F (1895) Noch ein Wort zu den “Knickfragen”. Schweiz Bauzeitung 25:172–175Google Scholar
  101. Jaumann G (1911) Geschlossenes System physikali- scher und chemischer Differential-Gesetze. Sitzber Akad Wiss Wien, Abt IIa 120:385–530zbMATHGoogle Scholar
  102. Johnson W, Kudo H (1962) The mechanics of metal extrusion. Manchester University Press, ManchesterGoogle Scholar
  103. Johnson W, Mellor PB (1973) Engineering plasticity. Van Nostrand Reinhold, LondonGoogle Scholar
  104. Johnson W, Sowerby R, Haddow JB (1970) Plane-strain slip-line fields: theory and bibliography. Edward Arnold Ltd., New YorkGoogle Scholar
  105. von Kármán T (1910) Untersuchungen über Knickfestigkeit., vol 81. Mitt. VDIGoogle Scholar
  106. von Kármán T (1925) Beitrag zur Theorie des Walzvorganges. Z Angew Math Mech 5:139–141zbMATHGoogle Scholar
  107. Kestin J, Rice JR (1970) Paradoxes in the applications of thermodynamics to strained solids. In: Stuart EB, Cal’Or B, Brainard AJ (eds) A critical review of thermodynamics. Mono Book Corp., Baltimore, pp 275–298Google Scholar
  108. Khan AS, Huang SJ (1995) Continuum theory of plasticity. Wiley, New YorkzbMATHGoogle Scholar
  109. Kitagawa H, Tomita Y (1974) Analysis of plane elastic-plastic large deformation problems by incremental type finite element method (in Japanese). Trans JSME 40:663–670CrossRefGoogle Scholar
  110. Kleiber M (1986) On errors inherent in commonly accepted rate forms of the elastic constitutive law. Arch Mech 38:271–279zbMATHGoogle Scholar
  111. Kobayashi S (1964) Upper bound solutions of axisymmetric forming problems. J Eng Ind, Trans ASME 86:122–126, 326–332Google Scholar
  112. Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-element method. Oxford University Press, New YorkGoogle Scholar
  113. Koiter WT (1953) Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quart Appl Math 11:350–354MathSciNetzbMATHCrossRefGoogle Scholar
  114. Koiter WT (1960) General theorems for elastic-plastic solids. In: Sneddon I, Hill R (eds) Progress in solid mechanics, chap IV, vol 1. North-Holland Publishing Company, Amsterdam, pp 165–121Google Scholar
  115. Kratochvíl J (1971) Finite-strain theory of crystalline elastic-inelastic materials. J Appl Phys 42:1104–1108CrossRefGoogle Scholar
  116. Kröner E (1958) Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, BerlinzbMATHCrossRefGoogle Scholar
  117. Kröner E (1960) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch Rat Mech Anal 4:273–334MathSciNetzbMATHCrossRefGoogle Scholar
  118. Kudo H (1960) Some analytical and experimental studies of axi-symmetric cold forging and extrusion. Int J Mech Sci 2:102–127CrossRefGoogle Scholar
  119. Lee CH, Kobayashi S (1973) New solutions to rigid-plastic deformation problems using a matrix method. Trans ASME, J Eng Ind 95:865–873CrossRefGoogle Scholar
  120. Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36:1–6zbMATHCrossRefGoogle Scholar
  121. Lee EH (1981) Some comments on elastic-plastic analysis. Int J Solids Struct 17:859–872zbMATHCrossRefGoogle Scholar
  122. Lee EH (1982) Finite deformation theory with nonlinear kinematics. In: Lee EH, Mallett RL (eds) Plasticity of metals at finite strain: theory, computation and experiment. Stanford University and RPI, Stanford, pp 107–129Google Scholar
  123. Lee EH (1996) Some anomalies in the structure of elastic-plastic theory at finite strain. In: Carroll MM, Hayes M (eds) Nonlinear effects in fluids and solids. Plenum Press, New York, pp 227–249CrossRefGoogle Scholar
  124. Lee EH, Germain P (1974) Elastic-plastic theory at finite strain. In: Sawczuk A (ed) Problems of plasticity. Nordhoff, Leyden, pp 117–133CrossRefGoogle Scholar
  125. Lee EH, Liu DT (1967) Finite strain elastic-plastic theory with application to plane-wave analysis. J Appl Phys 38:19–27CrossRefGoogle Scholar
  126. Lee EH, McMeeking RM (1980) Concerning elastic and plastic components of deformation. Int J Solids Struct 16:715–721MathSciNetzbMATHCrossRefGoogle Scholar
  127. Lehmann T (1972) Anisotrope plastische Formänderungen. Rom J Technol Sci Appl Mech 17:1077–1086zbMATHGoogle Scholar
  128. Lehmann T (ed) (1984) The constitutive law in thermoplasticity. CISM courses and lectures, vol 281. Springer, WienGoogle Scholar
  129. Lehmann T, Liang HY (1993) The stress conjugate to logarithmic strain \(\ln \mathbf {V}\). Z Angew Math Mech 73: 357–363MathSciNetzbMATHCrossRefGoogle Scholar
  130. Lehmann T, Guo ZH, Liang HY (1991) The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur J Mech A/Solids 10:395–404MathSciNetzbMATHGoogle Scholar
  131. Lévy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. C R Acad Sci Paris 70:1323–1325zbMATHGoogle Scholar
  132. Lin RC (2002) Numerical study of consistency of rate constitutive equations with elasticity at finite deformation. Int J Numer Meth Eng 55:1053–1077zbMATHCrossRefGoogle Scholar
  133. Lin RC, Schomburg U, Kletschkowski T (2003) Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur J Mech A/Solids 22:443–461zbMATHCrossRefGoogle Scholar
  134. Lubarda VA, Lee EH (1981) A correct definition of elastic and plastic deformation and its computational significance. J Appl Mech 48:35–40MathSciNetzbMATHCrossRefGoogle Scholar
  135. Lubliner J (1972) On the thermodynamic foundations of non-linear solid mechanics. Int J Non-Linear Mech 7:237–254zbMATHCrossRefGoogle Scholar
  136. Lubliner J (1984) A maximal-dissipation principle in generalized plasticity. Acta Mech 52:225–237MathSciNetzbMATHCrossRefGoogle Scholar
  137. Lubliner J (1986) Normality rules in large-deformation plasticity. Mech Mater 5:29–34CrossRefGoogle Scholar
  138. Lubliner J (1990) Plasticity theory. Macmillan Publishing Company, New YorkzbMATHGoogle Scholar
  139. Ludwik P (1909a) Elemente der technologischen Mechanik. Springer, BerlinzbMATHCrossRefGoogle Scholar
  140. Ludwik P (1909b) Über den Einfluß der Deformationsgeschwindigkeit bei bleibenden Deformationen mit besonderer Berücksichtigung der Nachwirkungserscheinungen. Phys Z 10:411–417Google Scholar
  141. Lung M, Mahrenholtz O (1973) A finite element procedure for analysis of metal forming processes. Trans CSME 2:31–36Google Scholar
  142. Macvean DB (1968) Die Elementararbeit in einem Kontinuum und die Zuordnung von Spannungs- und Ver-zerrungstensoren. Z Angew Math Phys 19:157–185zbMATHCrossRefGoogle Scholar
  143. Malvern LE (1951) The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect. J Appl Mech 18:203–208MathSciNetzbMATHGoogle Scholar
  144. Mandel JP (1972) Plasticité Classique et Viscoplasticité. CISM courses and lectures, vol 97. Springer, WienGoogle Scholar
  145. Mandel JP (1973a) Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int J Solids Struct 9:725–740zbMATHCrossRefGoogle Scholar
  146. Mandel JP (1973b) Relations de comportement des milieux élastiques-viscoplastiques. notion de répère directeur. In: Sawczuk A (ed) Foundations of plasticity. Noordhoff International Publishing, Leyden, pp 387–399Google Scholar
  147. Mandel JP (1974a) Director vectors and constitutive equations for plastic and viscoplastic media. In: Sawczuk A (ed) Problems of plasticity, Noordhoff International Publishing, Leyden, pp 135–143CrossRefGoogle Scholar
  148. Mandel JP (1974b) Thermodynamics and plasticity. In: Domingos JJ, Nina MNR, Whitelaw JH (eds) Foundations of continuum thermodynamics. The MacMillan Press, London, pp 283–304Google Scholar
  149. Mandel JP (1981) Sur la définition de la vitesse de déformation élastique et sa relation avec la vitesse de contrainte. Int J Solids Struct 17:873–878zbMATHCrossRefGoogle Scholar
  150. Marcal PV, King IP (1967) Elastic-plastic analysis of two-dimensional stress systems by the finite element method. Int J Mech Sci 9:143–145CrossRefGoogle Scholar
  151. Markov AA (1947) On variational principles in the theory of plasticity (in Russia). Prikl Mat Mekh 11: 339–350zbMATHGoogle Scholar
  152. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  153. Maugin GA (1992) The Thermomechanics of plasticity and fracture. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  154. McMeeking RM, Rice JR (1975) Finite-element formulations for problems of large elastic-plastic deformation. Int J Solids Struct 11:601–616zbMATHCrossRefGoogle Scholar
  155. Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Ing-Arch 9:116–126zbMATHCrossRefGoogle Scholar
  156. Meyers A, Xiao H, Bruhns O (2003) Elastic stress ratchetting and corotational stress rates. Technische Mechanik 23:92–102Google Scholar
  157. Meyers A, Xiao H, Bruhns OT (2006) Choice of objective rate in single parameter hypoelastic deformation cycles. Comput Struct 84:1134–1140CrossRefGoogle Scholar
  158. von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. In: Nachr. Königl. Ges. Wiss., Math. Phys. Kl., Göttingen, pp 582–592zbMATHGoogle Scholar
  159. von Mises R (1925) Bemerkungen zur Formulierung des mathematischen Problems der Plastizitätstheorie. Z angew Math Mech 5:147–149zbMATHGoogle Scholar
  160. von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. Z angew Math Mech 8:161–185zbMATHCrossRefGoogle Scholar
  161. Mori K, Osakada K, Oda T (1982) Simulation of plane-strain rolling by the rigid-plastic finite element. Int J Mech Sci 24:519–527CrossRefGoogle Scholar
  162. Morrison JLM, Shepherd WM (1950) An experimental investigation of plastic stress-strain relations. Proc Inst Mech Eng 163:1–17CrossRefGoogle Scholar
  163. Nádai A (1921) Versuche über die plastischen Formänderungen von keilförmigen Körpern aus Flußeisen. Z angew Math Mech 1:20–28CrossRefGoogle Scholar
  164. Nádai A (1931) Plasticity, a mechanics of the plastic state of matter. McGraw-Hill, New YorkzbMATHCrossRefGoogle Scholar
  165. Nádai A (1939) The force required for rolling steel strip under tension. J Appl Mech A 6:54–62Google Scholar
  166. Naghdi PM (1960) Stress-strain relations in plasticity and thermoplasticity. In: Lee EH, Symonds PS (eds) Plasticity, proceedings of 2nd symposium Naval structural mechanics. Pergamon Press, New York, pp 121–169Google Scholar
  167. Naghdi PM (1990) A critical review of the state of finite plasticity. Z Angew Math Phys 41:315–394MathSciNetzbMATHCrossRefGoogle Scholar
  168. Naghdi PM, Casey J (1992) A prescription for the identification of finite plastic strain. Int J Eng Sci 30:1257–1278MathSciNetzbMATHCrossRefGoogle Scholar
  169. Naghdi PM, Trapp JA (1975a) On the nature of normality of plastic strain rate and convexity of yield surfaces in plasticity. J Appl Mech 42:61–66zbMATHCrossRefGoogle Scholar
  170. Naghdi PM, Trapp JA (1975b) Restrictions on constitutive equations of finitely deformed elastic-plastic materials. Quart J Mech appl Math 28:25–46MathSciNetzbMATHCrossRefGoogle Scholar
  171. Naghdi PM, Trapp JA (1975c) The significance of formulating plasticity theory with reference to loading surfaces in strain space. Int J Eng Sci 13:785–797zbMATHCrossRefGoogle Scholar
  172. Nagtegaal JC, de Jong JE (1982) Some aspects of non-isotropic workhardening in finite strain plasticity. In: Lee EH, Mallet RL (eds) Plasticity of metals at finite strain: theory, computation and experiment. Stanford University, Stanford, pp 65–106Google Scholar
  173. Navier L (1821) Sur les lois des mouvements des fluides, en ayant égard à l’adhésion des molécules. Ann de Chimie 19:244–260Google Scholar
  174. Neff P, Münch I, Martin R (2016) Rediscovering G.F. Becker’s early axiomatic deduction of a multiaxial nonlinear stress-strain relation based on logarithmic strain. Math Mech Solids 21:856–911MathSciNetzbMATHCrossRefGoogle Scholar
  175. Nemat-Nasser S (1979) Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int J Solids Struct 15:155–166zbMATHCrossRefGoogle Scholar
  176. Nemat-Nasser S (1982) On finite deformation elasto-plasticity. Int J Solids Struct 18:857–872zbMATHCrossRefGoogle Scholar
  177. Noll W (1955) On the continuity of the solid and fluid state. J Rat Mech Anal 4:3–81MathSciNetzbMATHGoogle Scholar
  178. Norton FH (1929) Creep of steel at high temperatures. McGraw-Hill Book Co., New YorkGoogle Scholar
  179. Nouailhas D, Chaboche JL, Savalle S, Cailletaud G (1985) On the constitutive equations for cyclic plasticity under nonproportional loading. Int J Plasticity 1:317–330CrossRefGoogle Scholar
  180. Odqvist FKG (1933) Die Verfestigung von flußeisenähnlichen Körpern. Z angew Math Mech 13:360–363zbMATHCrossRefGoogle Scholar
  181. Odqvist FKG (1935) Creep stresses in a rotating disc. In: Proceedings of IV international congress for applied mechanics, Cambridge 1934, Cambridge University Press, pp 228–233Google Scholar
  182. Ogden RW (1984) Non-linear elastic deformations. Ellis Harwood, ChichesterzbMATHGoogle Scholar
  183. Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc Lond A 200:523–541MathSciNetzbMATHCrossRefGoogle Scholar
  184. Orowan E (1934) Zur Kristallplastizität I–III. Z Physik 89:605–613, 614–633, 634–659Google Scholar
  185. Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. Proc Inst Mech Eng 150:140–167CrossRefGoogle Scholar
  186. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Quart Appl Math 20: 321–332MathSciNetzbMATHCrossRefGoogle Scholar
  187. Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377CrossRefGoogle Scholar
  188. Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354zbMATHCrossRefGoogle Scholar
  189. Perzyna P, Wierzbicki T (1964) Temperature dependent and strain rate sensitive plastic materials. Arch Mech Stosow 16:135–143Google Scholar
  190. Phillips A (1974) The foundations of thermoplasticity – experiments and theory. In: Zeman JL, Ziegler F (eds) Topics in applied continuum mechanics. Springer, Wien, pp 1–21Google Scholar
  191. Phillips A, Kasper R (1973) On the foundations of thermoplasticity – an experimental investigation. J Appl Mech 40:891–896CrossRefGoogle Scholar
  192. Poisson SD (1831) Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. J École Poly 13Google Scholar
  193. Polanyi M (1934) Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z Physik 89:660CrossRefGoogle Scholar
  194. Prager W (1935) Der Einfluß der Verformung auf die Fließbedingung zähplastischer Körper. Z angew Math Mech 15:76–80zbMATHCrossRefGoogle Scholar
  195. Prager W (1944) Exploring stress-strain relations of isotropic plastic solids. J Appl Phys 15:65–71CrossRefGoogle Scholar
  196. Prager W (1945) Strain hardening under combined stresses. J Appl Phys 16:837–840MathSciNetCrossRefGoogle Scholar
  197. Prager W (1948) Theory of plastic flow versus theory of plastic deformation. J Appl Phys 19:540–543MathSciNetCrossRefGoogle Scholar
  198. Prager W (1949) Recent developments in the mathematical theory of plasticity. J Appl Phys 20:235–241MathSciNetzbMATHCrossRefGoogle Scholar
  199. Prager W (1953) A geometrical discussion of the slip line field in plane plastic flow, vol 65. Royal Institute of Technology, StockholmzbMATHGoogle Scholar
  200. Prager W (1955) Probleme der Plastizitätstheorie. Birkhäuser, BaselzbMATHCrossRefGoogle Scholar
  201. Prager W (1956) A new method of analyzing stresses and strains in work-hardening plastic solids. J Appl Mech 23, 24:493–496, 481–484Google Scholar
  202. Prager W (1958) Non-isothermal plastic deformation. Proc. Koninkl. Nederl. Acad. Wet. B61:176–182zbMATHGoogle Scholar
  203. Prager W (1960) An elementary discussion of definitions of stress rate. Quart Appl Math 18:403–407MathSciNetzbMATHCrossRefGoogle Scholar
  204. Prager W (1961) Introduction to mechanics of continua. Ginn and Company, BostonzbMATHGoogle Scholar
  205. Prager W, Hodge PG (1951) Theory of perfectly plastic solids. Wiley, New YorkzbMATHGoogle Scholar
  206. Prandtl L (1920) Über die Härte plastischer Körper. Nachr Königl Ges Wiss Göttingen Math-phys Kl pp 74–85Google Scholar
  207. Prandtl L (1921) Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden. Z angew Math Mech 1:15–20zbMATHCrossRefGoogle Scholar
  208. Prandtl L (1923) Anwendungsbeispiele zu einem Henckyschen Satz über das plastische Gleichgewicht. Z angew Math Mech 3:401–406zbMATHCrossRefGoogle Scholar
  209. Prandtl L (1924) Spannungsverteilung in plastischen Körpern. In: Proceedings of the 1st international congress for applied mechanics, Delft, pp 43–46Google Scholar
  210. Prandtl L (1928) Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z angew Math Mech 8: 85–106zbMATHCrossRefGoogle Scholar
  211. Raniecki B, Sawczuk A (1975) Thermal effects in plasticity. Part I coupled theory, part II uniqueness and applications. Z angew Math Mech 55:333–341, 363–373Google Scholar
  212. Reinhardt WD, Dubey RN (1995) Eulerian strain-rate as a rate of logarithmic strain. Mech Res Commun 22: 165–170zbMATHCrossRefGoogle Scholar
  213. Reinhardt WD, Dubey RN (1996) Coordinate-independent representation of spins in continuum mechanics. J Elast 42:133–144MathSciNetzbMATHCrossRefGoogle Scholar
  214. Reuss A (1930) Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. Z angew Math Mech 10:266–274zbMATHCrossRefGoogle Scholar
  215. Reuss A (1932) Fließpotential oder Gleitebenen? Z angew Math Mech 12:15–24zbMATHCrossRefGoogle Scholar
  216. Reuss A (1933) Vereinfachte Berechnung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung. Z angew Math Mech 13:356–360zbMATHCrossRefGoogle Scholar
  217. Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19:433–455zbMATHCrossRefGoogle Scholar
  218. Rice JR (1975) Continuum mechanics and thermodynamics of plasticity in relation to micro-scale deformation mechanism. In: Argon AS (ed) Constitutive equations in plasticity, MIT Press, Cambridge, pp 21–79Google Scholar
  219. Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Rat Mech Anal 4: 323–425MathSciNetzbMATHGoogle Scholar
  220. Rychlewski J (2011) Elastic energy decomposition and limit criteria. Eng Trans 59:31–63Google Scholar
  221. Sachs G (1927) Zur Theorie des Ziehvorganges. Z angew Math Mech 7:235–236zbMATHCrossRefGoogle Scholar
  222. Sachs G (1928) Zur Ableitung einer Fließbedingung. VDI-Z 72:734–736Google Scholar
  223. de Saint-Venant B (1843) Note à joindre au mémoire sur la dynamique des fluides, présenté le 14 avril 1834. C R Acad Sci, Paris 17:1240–1243Google Scholar
  224. de Saint-Venant B (1870) Sur l’établissement des équations des mouvements intérieurs opérés dans les corps solides au delà des limites où l’élasticité pourrait les ramener à leur premier état. C R Acad Sci, Paris 70:473–480zbMATHGoogle Scholar
  225. Schmid E (1925) Neuere Untersuchungen an Metall-kristallen. In: Biezeno CB, Burgers JM (eds) Proceedings of the first International Congress for Applied Mechanics, J. Waltmann Jr., Delft, pp 342–353Google Scholar
  226. Schmid E (1926) Über die Schubverfestigung von Einkristallen bei plastischer Deformation. Z Physik A 40:54–74CrossRefGoogle Scholar
  227. Schmidt R (1932) Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing-Arch 3:215–235zbMATHCrossRefGoogle Scholar
  228. Sedov LI (1966) Foundations of the non-linear mechanics of continua. Pergamon Press, OxfordzbMATHGoogle Scholar
  229. Seth BR (1964) Generalized strain measures with applications to physical problems. In: Reiner M, Abir D (eds) Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon Press, Oxford, pp 162–172Google Scholar
  230. Shanley FR (1946) The column paradox. J Aeronaut Sci 13:678CrossRefGoogle Scholar
  231. Shanley FR (1947) Inelastic column theory. J Aeronaut Sci 14:261–268CrossRefGoogle Scholar
  232. Sidoroff F (1973) The geometrical concept of intermediate configuration and elastic-plastic finite strain. Arch Mech 25:299–308MathSciNetzbMATHGoogle Scholar
  233. Siebel E (1923) Grundlagen zur Berechnung des Kraft- und Arbeitsbedarfs beim Schmieden und Walzen. Stahl u Eisen 43:1295–1298Google Scholar
  234. Simó JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkzbMATHGoogle Scholar
  235. Simó JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Compt Meth Appl Mech Eng 46:201–215zbMATHCrossRefGoogle Scholar
  236. Smith GV (1962) Stress-strain-time-temperature relations in metallic materials. In: Stress-strain-time-temperature relationships in materials, no. 325. ASTM Special Technical Publication, Philadelphia, pp 35–59Google Scholar
  237. Sokolovskii VV (1946) The theory of plasticity – outline of work done in russia. J Appl Mech 13:A1–A10MathSciNetzbMATHGoogle Scholar
  238. Sowerby R, Chu E (1984) Rotations, stress rates and strain measures in homogeneous deformation processes. Int J Solids Struct 20:1037–1048zbMATHCrossRefGoogle Scholar
  239. Stokes G (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Cambr Phil Soc 8:287–319Google Scholar
  240. Strang G, Fix G (1973) An analysis of the finite element method. Prentice Hall, Englewood ClifszbMATHGoogle Scholar
  241. Szabó L, Balla M (1989) Comparison of some stress rates. Int J Solids Struct 25:279–297MathSciNetCrossRefGoogle Scholar
  242. Taylor GI (1934) The mechanism of plastic deformation of crystals I-II. Proc R Soc Lond A 145:362–387, 388–404zbMATHCrossRefGoogle Scholar
  243. Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324Google Scholar
  244. Taylor GI, Elam CF (1923) The distortion of an aluminium crystal during a tensile test. Proc R Soc Lond A 102:643–667CrossRefGoogle Scholar
  245. Thomas TY (1955a) Kinematically preferred co-ordinate systems. Proc Nat Acad Sci USA, Math 41:762–770MathSciNetzbMATHCrossRefGoogle Scholar
  246. Thomas TY (1955b) On the structure of stress-strain relations. Proc Nat Acad Sci USA, Eng 41:716–720MathSciNetzbMATHCrossRefGoogle Scholar
  247. Tokuoka T (1977) Rate type plastic material with kinematic work-hardening. Acta Mech 27:145–154CrossRefGoogle Scholar
  248. Tokuoka T (1978) Prandtl-Reuss plastic material with scalar and tensor internal variables. Arch Mech 30:801–826MathSciNetzbMATHGoogle Scholar
  249. Tresca HE (1864) Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C R Acad Sci Paris 59:754–758Google Scholar
  250. Tresca HE (1868) Mémoire sur l’écoulement des corps solides. Mém pres par div sav 18:733–799zbMATHGoogle Scholar
  251. Trinks W (1937) Pressure and roll flattening in cold rolling. Blast Furnace Steel Plant 25:617–623Google Scholar
  252. Truesdell C (1952, 1953) The mechanical foundations of elasticity and fluid dynamics. J Rat Mech Anal 1, 2:125–300, 595–616MathSciNetzbMATHCrossRefGoogle Scholar
  253. Truesdell C (1955a) Hypo-elasticity. J Rat Mech Anal 4:83–133MathSciNetzbMATHGoogle Scholar
  254. Truesdell C (1955b) The simplest rate theory of pure elasticity. Comm Pure Appl Math 8:123–132MathSciNetzbMATHCrossRefGoogle Scholar
  255. Truesdell C, Noll W (1965) The non-linear field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, vol III/3. Springer, BerlinGoogle Scholar
  256. Truesdell CA (1964) Second-order effects in the mechanics of materials. In: Reiner M, Abir D (eds) Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon Press, OxfordGoogle Scholar
  257. Truesdell CA (1984) Rational thermodynamics, 2nd edn. Springer, New YorkzbMATHCrossRefGoogle Scholar
  258. Voigt W (1890) Über die innere Reibung der festen Körper, insbesondere der Krystalle. Abh Kgl Ges Wiss Göttingen Math. Kl. 36, 1Google Scholar
  259. Voigt W (1892) Bestimmung der Constanten der Elasticität und Untersuchung der inneren Reibung für einige Metalle. Abh Kgl Ges Wiss Göttingen Math. Kl. 38, 2Google Scholar
  260. Washizu K (1968) Variational methods in elasticity and plasticity. Pergamon Press, OxfordzbMATHGoogle Scholar
  261. Willhelm AC, Kattus JR (1963) Stress-strain characteristics of metals under conditions of transient heating and loading. Proc Am Soc Testing Mater 63: 613–619Google Scholar
  262. Willis JR (1969) Some constitutive equations applicable to problems of large dynamic plastic deformation. J Mech Phys Solids 17:359–369zbMATHCrossRefGoogle Scholar
  263. Xiao H (1995) Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. Int J Solids Struct 32:3327–3340MathSciNetzbMATHCrossRefGoogle Scholar
  264. Xiao H, Bruhns OT, Meyers A (1997a) Hypo-elasticity model based upon the logarithmic stress rate. J Elast 47:51–68MathSciNetzbMATHCrossRefGoogle Scholar
  265. Xiao H, Bruhns OT, Meyers A (1997b) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech 124:89–105MathSciNetzbMATHCrossRefGoogle Scholar
  266. Xiao H, Bruhns OT, Meyers A (1997c) A new aspect in the kinematics of large deformations. In: Gupta NK (ed) Plasticity and impact mechanics. New Age Internat. Ltd., New Delhi, pp 100–109Google Scholar
  267. Xiao H, Bruhns OT, Meyers A (1998a) Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch Mech 50:1015–1045MathSciNetzbMATHGoogle Scholar
  268. Xiao H, Bruhns OT, Meyers A (1998b) On objective corotational rates and their defining spin tensors. Int J Solids Struct 35:4001–4014MathSciNetzbMATHCrossRefGoogle Scholar
  269. Xiao H, Bruhns OT, Meyers A (1998c) Strain rates and material spins. J Elast 52:1–41MathSciNetzbMATHCrossRefGoogle Scholar
  270. Xiao H, Bruhns OT, Meyers A (2000) The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc R Soc Lond A 456:1865–1882MathSciNetzbMATHCrossRefGoogle Scholar
  271. Xiao H, Bruhns OT, Meyers A (2002) New results for the spin of the Eulerian triad and the logarithmic spin and rate. Acta Mech 155:95–109zbMATHCrossRefGoogle Scholar
  272. Xiao H, Bruhns OT, Meyers A (2006) Elastoplasticity beyond small deformations. Acta Mech 182(1–2): 31–111zbMATHCrossRefGoogle Scholar
  273. Xiao H, Bruhns OT, Meyers A (2007) Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects. J Mech Phys Solids 55:338–365MathSciNetzbMATHCrossRefGoogle Scholar
  274. Yamada Y, Yoshimura N, Sakurai T (1968) Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int J Mech Sci 10:343–354zbMATHCrossRefGoogle Scholar
  275. Yang DY, Lee CH (1978) Analysis of three-dimensional extrusion of sections through curved dies by conformal transformation. Int J Mech Sci 26:541–552CrossRefGoogle Scholar
  276. Zaremba S (1903) Sur une forme perfectionée de la théorie de la relaxation. Bull Intern Acad Sci Cracovie pp 594–614Google Scholar
  277. Zhilin PA, Altenbach H, Ivanova EA, Krivtsov A (2013) Material strain tensors. In: Altenbach H, et al (eds) Generalized continua as models for materials. Springer, Berlin/Heidelberg/New York, pp 321–331CrossRefGoogle Scholar
  278. Ziegler H (1958) An attempt to generalize Onsager’s principle, and its significance for rheological problems. Z Angew Math Phys 9:748–763MathSciNetzbMATHCrossRefGoogle Scholar
  279. Ziegler H (1959) A modification of Prager’s hardening rule. Quart Appl Math 17:55–65MathSciNetzbMATHCrossRefGoogle Scholar
  280. Ziegler H (1963) Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol 4. North-Holland, Amsterdam, pp 93–193Google Scholar
  281. Zienkiewicz O, Cheung Y (1967) The finite element method in structural and continuum mechanics. Mc-Graw-Hill, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for MechanicsRuhr-University BochumBochumGermany

Section editors and affiliations

  • Otto T. Bruhns
    • 1
  1. 1.Institute for MechanicsRuhr-University BochumBochumGermany