Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Effect of Pressure on Mechanical Properties of Polymers

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-662-53605-6_270-2



Polymer is a substance consisting of macromolecules of different lengths, which have a long sequence of one or more groups of monomeric units (shorter molecules) linked together with a primary or covalent chemical bond.

Time-dependent mechanical property is the characteristic of a polymer (or any other viscoelastic material) that interrelates the cause in the form of stress or strain and the time-dependent response (in the form of increasing strain or decaying stress).

Time-pressure superposition principle claims that material function can be generated by shifting isobaric segments of time-dependent mechanical properties measured at different pressures along the logarithmic time scale in respect to the segment selected at reference pressure.

Compressibility is a measure of relative change of the volume of polymer exposed to the pressure change.


To fully comprehend the content of the following...
This is a preview of subscription content, log in to check access.



The authors acknowledge the programme P2-0264 “Sustainable Polymer Materials and Technologies” financially supported by the Slovenian Research Agency.


  1. Bianchi U (1965) Pressure effects on glass transition in polymers. J Phys Chem 69(6):1497–1504. https://doi.org/10.1021/j100889a010CrossRefGoogle Scholar
  2. Cheng SZD (2008) Phase transitions in polymers. The role of metastable states. Science 309. https://doi.org/10.1016/B978-0-444-51911-5.00004-9CrossRefGoogle Scholar
  3. Cucarella MCM (1982) Effects of high pressure on polymers (II) crystallization. Lat Am J Metall Mater 2(1):46–60Google Scholar
  4. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  5. Fillers RW, Tschoegl NW (1977) The effect of pressure on the mechanical properties of polymers. J Rheol 21(1):51. https://doi.org/10.1122/1.549463CrossRefGoogle Scholar
  6. Freeman BD, Bokobza L, Monnerie L (1990) The effect of hydrostatic pressure on local polymer dynamics in polyisoprene. Polymer 31:1045–1050CrossRefGoogle Scholar
  7. Harte AM, Williams D, Grealish F (2012) A coupled temperature-displacement model for prediction the long-term performance of offshore pipeline insulation systems. J Mater Process Technol 155-156:1242–1246CrossRefGoogle Scholar
  8. Havlicek I, Ilavsky M, Hrouz J (1982) Effect of pressure on the cooperative relaxation properties and glass transition temperature of amorphous polymers. J Macromol Sci Phys B21:425–441CrossRefGoogle Scholar
  9. Hellwege KH, Knappe W, Lehmann P (1962) Die isotherme Kompressibilitat einiger amorpher und teilkristalliner Hochpolymerer im Temperaturbereich von 20–250 °C und bei Drucken bis zu 2000 kp/cm2. Kolloid-Zeitschrift & Zeitschrift Fur Polymere 183(2):110–120. https://doi.org/10.1007/BF02657207CrossRefGoogle Scholar
  10. Jaeger G (1998) The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci 53(1):51–81. https://doi.org/10.1007/s004070050021MathSciNetCrossRefzbMATHGoogle Scholar
  11. Knauss WG, Emri I (1981) Non-linear viscoelasticity based on free volume consideration. Comput Struct 23(1–3):123–128CrossRefGoogle Scholar
  12. Kralj A, Prodan T, Emri I (2001) An apparatus for measuring the effect of pressure on the time-dependent properties of polymers. J Rheol 45(929):929–943. https://doi.org/10.1122/1.1380260CrossRefGoogle Scholar
  13. Moonan WK, Tschoegl NW (1985) The effect of pressure on the mechanical properties of polymers. IV. Measurements in torsion. J Polym Sci Polym Phys Ed 23(4):623–651CrossRefGoogle Scholar
  14. Paterson MS (1964) Effect of pressure on Young’s modulus and the glass transition in rubbers. J Appl Phys 35(1):176–179. https://doi.org/10.1063/1.1713063CrossRefGoogle Scholar
  15. Ramos AR, Kovacs AJ, O’Reilly JM, Tribone JJ, Greener J (1988) Effect of combined pressure and temperature changes on structural recovery of glass-forming materials. I. Extension of the KHAR model. J Polym Sci Polym Phys 26:501–513CrossRefGoogle Scholar
  16. Schneider HA, Rudolf B, Karlou K, Cantow HJ (1994) Pressure influence on the glass transition of polymers and polymer blends. Polym Bull 32(5–6):645–652. https://doi.org/10.1007/BF00973914CrossRefGoogle Scholar
  17. Seeger A, Freitag D, Freidel F, Luft G (2004) Melting point of polymers under high pressure: part I: influence of the polymer properties. Thermochim Acta 424(1–2):175–181. https://doi.org/10.1016/j.tca.2004.05.025CrossRefGoogle Scholar
  18. Somcynsky T, Simha R (1971) Hole theory of liquids and glass transition. J Appl Phys 42:4545–4548CrossRefGoogle Scholar
  19. Tribone JJ, O’Reilly JM (1989) Pressure-jump volume-relaxation studies of polystyrene in the glass transition region. J Polym Sci Part B 27:837–857CrossRefGoogle Scholar
  20. Tschoegl N (1989) The phenomenological theory of linear viscoelastic behavior: an introduction. Springer-Verlag Berlin HeidelbergCrossRefGoogle Scholar
  21. Tschoegl N, Knauss W, Emri I (2002) The effect of temperature and pressure on the mechanical properties of thermo-and/or piezorheologically simple polymeric materials in thermodynamic equilibrium – a critical review. Mech Time-Depend Mater 6:53–99. https://doi.org/10.1023/A:1014421519100CrossRefGoogle Scholar
  22. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Section editors and affiliations

  • Sergey Alexandrov
    • 1
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia