Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Metal Forming Simulation Based on Advanced Mechanical Model Strongly Coupled with Ductile Damage

  • Z. M. Yue
  • H. Badreddine
  • K. SaanouniEmail author
  • C. Labergere
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_258-1



  • The Heaviside function: \( \left\langle x\right\rangle =\left\{\begin{array}{l}x,\, x\ge 0\\ {}0,\, x<0\, \end{array}\right. \)

This is a preview of subscription content, log in to check access.


  1. Badreddine H, Saanouni K (2015) Advanced anisotropic damage model fully coupled with anisotropic plasticity. Appl Mech Mater 784:153–160CrossRefGoogle Scholar
  2. Badreddine H, Saanouni K, Dogui A (2010) On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming. Int J Plast 26(11):1541–1575CrossRefGoogle Scholar
  3. Bathe KJ (1982) Finite element procedures in engineering analysis. Prentice-Hall, Upper Saddle River, USAGoogle Scholar
  4. Belytschko T, Liu WK, Moran B, Elkhodary K (2001) Nonlinear finite elements for continua and structures. Wiley, New YorkGoogle Scholar
  5. Benzerga AA, Besson J (2001) Plastic potentials for anisotropic porous solids. Eur J Mech A Solids 20A(3):397–434CrossRefGoogle Scholar
  6. Benzerga AA, Besson J, Pineau A (1999) Coalescence-controlled anisotropic ductile fracture. J Eng Mater Technol 121:121–229CrossRefGoogle Scholar
  7. Beremin FM (1981) Cavity formation from inclusions in ductile fracture of A508 steel. Metall Trans A 12A:723–731CrossRefGoogle Scholar
  8. Bouchard P-O, Bourgeon L, Lachapele H, Maire E, Verdu C, Forestier R, Logé RE (2008) On the influence of particle distribution and reverse loading on damage mechanisms of ductile steels. Mater Sci Eng A 496(1):223–233CrossRefGoogle Scholar
  9. Cao TS, Bobadilla C, Montmitonnet P, Bouchard PO (2013) On the development and identification of phenomenological damage models – application to industrial wire drawing and rolling processes. Key Eng Mater 554:213–226CrossRefGoogle Scholar
  10. Chaboche J (1988) Continuum damage mechanics: part I – general concepts. Int J Appl Mech 55(1):59–64CrossRefGoogle Scholar
  11. Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. WileyGoogle Scholar
  12. Dafalias Y (1985) The plastic spin. J Appl Mech 52(4):865–871MathSciNetCrossRefGoogle Scholar
  13. Diamantopoulou E, Liu W, Labergere C, Badreddine H, Saanouni K, Hu P (2017) Micromorphic constitutive equations with damage applied to metal forming. Int J Damage Mech 26(2):314–339CrossRefGoogle Scholar
  14. Dienes JK (1979) On the analysis of rotation and stress rate in deforming bodies. Acta Mech 32(4):217–232MathSciNetCrossRefGoogle Scholar
  15. Dogui A (1989) Plasticité anisotrope en grandes déformations. PhD, Université Claude Bernard-Lyon IGoogle Scholar
  16. François M (2001) A plasticity model with yield surface distortion for non proportional loading. Int J Plast 17(5):703–717CrossRefGoogle Scholar
  17. Garajeu M, Michel JC, Suquet P (2000) A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids. Comput Methods Appli Mech Eng 183:223–246CrossRefGoogle Scholar
  18. Gelin JC (1990) Finite element analysis of ductile fracture and defects formations in cold and hot forging. Ann CIRP 39:215–218CrossRefGoogle Scholar
  19. Ghozzi Y, Labergere C, Villon P (2012) Numerical simulation based on meshless formulation: application to 2D solid mechanics. In: ASME 2012 11th biennial conference on engineering systems design and analysis. American Society of Mechanical Engineers, New York, pp 439–447Google Scholar
  20. Ghozzi Y, Labergere C, Saanouni K, Parrico A (2014) Modelling and numerical simulation of thick sheet double slitting process using continuum damage mechanics. Int J Damage Mech 23:1150–1167CrossRefGoogle Scholar
  21. Gologanu M, Leblond JB, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids – case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41(11):1723–1754CrossRefGoogle Scholar
  22. Gologanu M, Leblond JB, Devaux J (1994) Approximate models for ductile metals containing non-spherical voids – case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Technol 116:290–297CrossRefGoogle Scholar
  23. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I – yield criteria and flow rules for porous ductile media. J Eng Mater Technol ASME 99(1):2–15CrossRefGoogle Scholar
  24. Hughes TJ, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59(1):85–99CrossRefGoogle Scholar
  25. Issa M, Labergère C, Saanouni K, Rassineux A (2012) Numerical prediction of thermomechanical field localization in orthogonal cutting. CIRP J Manuf Sci Technol 5(3):175–195CrossRefGoogle Scholar
  26. Labergere C, Guelorget B, Francois M (2014) Strain rate distribution and localization band width evolution during tensile test. Int J Solids Struct 51(23):3944–3961CrossRefGoogle Scholar
  27. Lemaitre J. and J. Chaboche (1975) A non-linear model of creep-fatigue damage cumulation and interaction (for hot metallic structures). In: Mechanics of visco-elastic media and bodiesGoogle Scholar
  28. Lemaitre J, Chaboche J-L (1994) Mechanics of solid materials. Cambridge University PressGoogle Scholar
  29. Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer Science & Business MediaGoogle Scholar
  30. Lemaitre J, Chaboche J-L, Benallal A, Desmorat R (1985) Mécanique des matériaux solides. Dunod, ParisGoogle Scholar
  31. Lemaitre J, Desmorat R, Sauzay M (2000) Anisotropic damage law of evolution. Eur J Mech A Solids 19(2):187–208CrossRefGoogle Scholar
  32. Liu W, Saanouni K, Forest S, Hu P (2017) The micromorphic approach to generalized heat equations. J Non-Equilib Thermodyn 42(4):327–357CrossRefGoogle Scholar
  33. Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. Springer Science & Business MediaGoogle Scholar
  34. Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531CrossRefGoogle Scholar
  35. Nguyen TD (2012) Anisotropie de l’endommagement et simulations numériques en mise en forme par grandes déformations plastiques PhD thesis, TroyesGoogle Scholar
  36. Onate E, Kleiber M (1988) Plastic and viscoplastic flow of void containing metal – applications to axisymmetric sheet forming problem. Int J Numer Methods Eng 25:237–251CrossRefGoogle Scholar
  37. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–2017CrossRefGoogle Scholar
  38. Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111CrossRefGoogle Scholar
  39. Saanouni K (2012) Damage mechanics in metal forming: advanced modeling and numerical simulation. WileyGoogle Scholar
  40. Saanouni K, Hamed M (2013) Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: formulation and computational aspects. Int J Solids Struct 50(14):2289–2309CrossRefGoogle Scholar
  41. Saanouni K, Forster C, Hatira FB (1994) On the anelastic flow with damage. Int J Damage Mech 3(2):140–169CrossRefGoogle Scholar
  42. Sidoroff F, Dogui A (2001) Some issues about anisotropic elastic–plastic models at finite strain. Int J Solids Struct 38(52):9569–9578CrossRefGoogle Scholar
  43. Simo JC, Hughes T (1998) Computational inelasticity. Springer, New York (1980)Google Scholar
  44. Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–151CrossRefGoogle Scholar
  45. Wierzbicki T, Xue L (2005) On the effect of the third invariant of the stress deviator on ductile fracture. Impact and Crashworthiness Laboratory, Technical Report (136)Google Scholar
  46. Yue Z (2014) Ductile damage prediction in sheet metal forming processes. Université de Technologie de Troyes, TroyesGoogle Scholar
  47. Yue Z, Soyarslan C, Badreddine H, Saanouni K, Tekkaya A (2014) Identification of fully coupled anisotropic plasticity and damage constitutive equations using a hybrid experimental–numerical methodology with various triaxialities. Int J Damage Mech 24(5):683–710CrossRefGoogle Scholar
  48. Zhang Z, Thaulow C, Ødegård J (2000) A complete Gurson model approach for ductile fracture. Eng Fract Mech 67(2):155–168CrossRefGoogle Scholar
  49. Zienkiewicz O (1984) Flow formulation for numerical solution of forming processes. In: Numerical analysis of forming processes, vol 25. Wiley, Chichester, pp 1–44Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Z. M. Yue
    • 1
  • H. Badreddine
    • 2
  • K. Saanouni
    • 2
    Email author
  • C. Labergere
    • 2
  1. 1.School of Mechanical and Electrical EngineeringShandong University at WeihaiWeihaiChina
  2. 2.ICD-LASMIS, University of Technology of TroyesTroyesFrance

Section editors and affiliations

  • Artur Ganczarski
    • 1
  1. 1.Cracow University of TechnologyKrakówPoland