Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Carbon Nanotubes

Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_212-1

Synonyms

Definitions

Carbon nanotubes (CNTs) are hollow cylindrical graphite structures with usually closed ends made of one (single-walled) or more (multiwalled) concentric cylindrical layers. CNTs have a high aspect ratio greater than 1000. The diameter lies in nanometer scale having the range from 0.5 nm to 2 nm for single-walled structures and is greater than several nm for multiwalled nanotubes, and the length even in microsize. Carbon nanotubes are the most studied carbon structures due to their outstanding mechanical, electrical, optical, and chemical properties what offer a broad range of possible applications.

Introduction

In the 1970s during decomposition of hydrocarbons, small diameter carbon fibers were observed, but because of limitation on characterization and measurement they were not described (Ma and Kim 2011). Later, in 1991 new tubular carbon nanostructures were observed and characterized by Iijima (1991). During the analysis of the...

This is a preview of subscription content, log in to check access

References

  1. Ajayan PM (2000) Carbon nanotubes. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology. Academic, San Diego, pp 329–360Google Scholar
  2. Belytschko T, Xiao SP, Schatz GC, Ruoff R (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430.  https://doi.org/10.1103/PhysRevB.65.235430 CrossRefGoogle Scholar
  3. Bhushan B (2004) Handbook of nanotechnology. Springer, BerlinCrossRefGoogle Scholar
  4. Chwał M (2011) Influence of vacancy defects on the mechanical behavior and properties of carbon nanotubes. Procedia Eng 10:1579–1584.  https://doi.org/10.1016/j.proeng.2011.04.264 CrossRefGoogle Scholar
  5. Chwał M (2014) Non-linear modeling of single-walled carbon nanotubes. Appl Mech Mater 477–478:1225–1228.  https://doi.org/10.4028/www.scientific.net/AMM.477-478.1225 Google Scholar
  6. Chwał M (2017) Deformations and tensile fracture of carbon nanotubes based on the numerical homogenization. Acta Phys Pol A 131:440–443.  https://doi.org/10.12693/APhysPolA.131.440 CrossRefGoogle Scholar
  7. Chwał M, Muc A (2016) Transversely isotropic properties of carbon nanotube/polymer composites. Compos B 88:295–300.  https://doi.org/10.1016/j.compositesb.2015.11.009 Google Scholar
  8. Cornwell CF, Wille LT (1997) Elastic properties of single-walled nanotubes in compression. Sol State Commun 101:555–558.  https://doi.org/10.1016/S0038-1098(96)00742-9 CrossRefGoogle Scholar
  9. Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. In: Jorio A, Dresselhaus MS, Dresselhaus G (eds) Carbon nanotubes. Springer, Berlin/Heidelberg, pp 13–61Google Scholar
  10. Govindjee G, Sackman JL (1999) On the use of continuum mechanics to estimate the properties of nanotubes. Sol State Commun 110:227–230.  https://doi.org/10.1016/S0038-1098(98)00626-7 CrossRefGoogle Scholar
  11. Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput Methods Appl Mech Eng 193:1773–1788.  https://doi.org/10.1016/j.cma.2003.12.025 MathSciNetCrossRefMATHGoogle Scholar
  12. Harik VM (2002) Mechanics of carbon nanotubes: applicability of the continuum-beam models. Comput Mater Sci 24:328–342.  https://doi.org/10.1016/S0927-0256(01)00255-5 CrossRefGoogle Scholar
  13. Hernandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502–4505.  https://doi.org/10.1103/PhysRevLett.80.4502 CrossRefGoogle Scholar
  14. Hirahara K, Suenaga K, Bandow S, Kato SH, Okazaki T, Shinohara H, Iijima S (2000) One dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387.  https://doi.org/10.1103/PhysRevLett.85.5384 CrossRefGoogle Scholar
  15. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58.  https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  16. Krasheninnikov AV, Nordlund K (2002) Stability or irradiation-induced point defects on walls of carbon nanotubes. J Vac Sci Technol B 20:728–733.  https://doi.org/10.1116/1.1463728 CrossRefGoogle Scholar
  17. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013–14019.  https://doi.org/10.1103/PhysRevB.58.14013 CrossRefGoogle Scholar
  18. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499.  https://doi.org/10.1016/S0020-7683(03)00056-8 CrossRefMATHGoogle Scholar
  19. Li C, Chou TW (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 66:2409–2414.  https://doi.org/10.1016/j.compscitech.2006.01.013 CrossRefGoogle Scholar
  20. Lisi X, Guohao W, Hao Z, Fan Z, Zhide G, Chuan L, Xianzhong Z, Lei Z (2016) Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103:219–228.  https://doi.org/10.1016/j.biomaterials.2016.06.058 CrossRefGoogle Scholar
  21. Lu JP (1997) Elastic properties of single and multilayered nanotubes. J Phys Chem Solids 58:1649–1652.  https://doi.org/10.1016/S0022-3697(97)00045-0 CrossRefGoogle Scholar
  22. Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. CRC Press, Boca RatonGoogle Scholar
  23. Mielke SL, Troya D, Zhang S, Li JL, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nano-tubes. Chem Phys Lett 390:413–420.  https://doi.org/10.1016/j.cplett.2004.04.054 CrossRefGoogle Scholar
  24. Muc A, Chwał M (2011) Vibration control of defects in carbon nanotubes. Sol Mech Appl 30:239–246.  https://doi.org/10.1007/978-94-007-1643-8_27 Google Scholar
  25. Odegard GM, Gates T, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880.  https://doi.org/10.1016/S0266-3538(02)00113-6 CrossRefGoogle Scholar
  26. Overney G, Zhong W, Tomanek D (1993) Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift Fur Physik D 27:93–96.  https://doi.org/10.1007/BF01436769 CrossRefGoogle Scholar
  27. Paris O (2016) Structure and multiscale mechanics of carbon nanomaterials. Springer, HeidelbergCrossRefGoogle Scholar
  28. Pipes RB, Hubert P (2002) Self-consistent geometry, density and stiffness of carbon nanotubes. In: Proceedings of the 17th ASC conference, West LafayetteGoogle Scholar
  29. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–533CrossRefGoogle Scholar
  30. Sattler KD (2011) Handbook of nanophysics. CRC Press, Boca RatonGoogle Scholar
  31. Sharma S, Chandra R, Kumar P, Kumar N (2014) Effect of Stone–Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation. Comput Mater Sci 86:1–8.  https://doi.org/10.1016/j.commatsci.2014.01.035 CrossRefGoogle Scholar
  32. Srivastava D, Wei C, Cho K (2003) Nanomechanics of carbon nanotubes and composites. Appl Mech Rev 56:215–230.  https://doi.org/10.1115/1.1538625 CrossRefGoogle Scholar
  33. Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H, Willaime F (1997) Synthesis of nanoparticles and nanotubes with well separated layers of boron-nitride and carbon. Science 278:653–655.  https://doi.org/10.1126/science.278.5338.653 CrossRefGoogle Scholar
  34. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRefGoogle Scholar
  35. Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B 36:468–477.  https://doi.org/10.1016/j.compositesb.2004.10.003 CrossRefGoogle Scholar
  36. Tserpes KI, Silvestre N (eds) (2014) Modeling of carbon nanotubes, graphene and their composites. Springer, Berlin/HeidelbergGoogle Scholar
  37. Tserpes KI, Papanikos P, Labeas G, Pantelakis SG (2008) Multi-scale modeling of tensile bahavior of carbon nanotube-reinforced composites. Theor Appl Fract Mech 49:51–60.  https://doi.org/10.1016/j.tafmec.2007.10.004 CrossRefGoogle Scholar
  38. Ugarte D, Chatelain A, de Heer WA (1996) Nanocapillarity and chemistry in carbon nanotubes. Science 274:1897–1899CrossRefGoogle Scholar
  39. Zhou X, Zhou JJ, Ou-Yang ZC (2000) Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B 62: 13692–13696. https://doi.org/10.1103/PhysRevB.62.13692 CrossRefGoogle Scholar
  40. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instability beyond linear range. Phys Rev Lett 76:2511–2514.  https://doi.org/10.1103/PhysRevLett.76.2511 CrossRefGoogle Scholar
  41. Yakobson BI, Campbell MP, Brabec CJ, Bernholc J (1997) High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput Mater Sci 8:341–348.  https://doi.org/10.1016/S0927-0256(97)00047-5 CrossRefGoogle Scholar
  42. Zhang S, Mielke SL, Khare R, Troya D, Ruoff RS, Schatz GC, Belytschko T (2005) Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys Rev B 71:115403.  https://doi.org/10.1103/PhysRevB.71.115403 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringCracow University of Technology, Institute of Machine DesignCracowPoland

Section editors and affiliations

  • Victor A. Eremeyev
    • 1
  1. 1.Gdańsk University of TechnologyGdańskPoland