Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Impact of Cellular Materials

  • Dora Karagiozova
  • Genevieve Sarah LangdonEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_203-1



A “cellular solid” is an assembly of cells packed together to fill space. It is generally defined as a structure having relative density\( 0<\overline{\rho}\le 0.3 \)

This is a preview of subscription content, log in to check access.


  1. Arora H, Hooper PA, Dear JP (2011) Dynamic response of full-scale sandwich composite structures subject to air-blast loading. Compos Part A 42:1651–1662CrossRefGoogle Scholar
  2. Barnes AT, Ravi-Chandar K, Kyriakides S, Gaitanaros S (2014) Dynamic crushing of aluminum foams: part I – experiments. Int J Solids Struct 51:1631–1645CrossRefGoogle Scholar
  3. Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, Berlin/HeidelbergzbMATHGoogle Scholar
  4. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  5. Gumruk R, Mines RAW (2013) Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci 68:125–139CrossRefGoogle Scholar
  6. Harrigan JJ, Reid SR, Tan PJ, Reddy TY (2005) High rate crushing of wood along the grain. Int J Mech Sci 47:521–544CrossRefGoogle Scholar
  7. Harrigan JJ, Reid SR, Yaghoubi AS (2010) The correct analysis of shocks in a cellular material. Int J Impact Eng 37:918–927CrossRefGoogle Scholar
  8. Hopkins HG (1968) The method of characteristics and its application to the theory of stress waves in solids. In: Engineering plasticity, Hayman J, Leckie FA (eds). Cambridge University Press, Cambridge, pp 277–315Google Scholar
  9. Idris MI, Vodenitcharova T, Hoffman M (2009) Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression. Mater Sci Eng A 517:37–45CrossRefGoogle Scholar
  10. Jang W-Y, Kyriakides S (2009a) On the crushing aluminum open-cell foams: part I. Experiments. Int J Solids Struct 46:617–634CrossRefGoogle Scholar
  11. Jang W-Y, Kyriakides S (2009b) On the crushing aluminum open-cell foams: part II. Analysis. Int J Solids Struct 46:635–650CrossRefGoogle Scholar
  12. Jang W-Y, Kyriakides S, Kraynik AM (2010) On the compressive strength of open-cell metal foams with Kelvin and random cell structures. Int J Solids Struct 47:2872–2883CrossRefGoogle Scholar
  13. Karagiozova D, Alves M (2014) Compaction of a double-layered metal foam block impacting a rigid wall. Int J Solids Struct 51:2424–2438CrossRefGoogle Scholar
  14. Karagiozova D, Alves M (2015a) Primary and reflected compaction waves in a foam rod due to an axial impact by a small mass. Lat Am J Solids Struct 12:905–924CrossRefGoogle Scholar
  15. Karagiozova D, Alves M (2015b) Stress waves in layered cellular materials – dynamic compaction under axial impact. Int J Mech Sci 101–102:196–213CrossRefGoogle Scholar
  16. Karagiozova D, Alves M (2015c) Propagation of compaction waves in cellular materials with continuously varying density. Int J Solids Struct 71:323–337CrossRefGoogle Scholar
  17. Karagiozova D, Langdon GS, Nurick GN (2010) Blast attenuation in Cymat foam core sacrificial claddings. Int J Mech Sci 52:758–776CrossRefGoogle Scholar
  18. Karagiozova D, Langdon GS, Nurick GN (2012) Propagation of compaction waves in metal foams exhibiting strain hardening. Int J Solids Struct 49:2763–2777CrossRefGoogle Scholar
  19. Karagiozova D, Langdon GS, Nurick GN, Niven T (2016) The influence of a low density foam sandwich core on the response of a partially confined steel cylinder to internal air-blast. Int J Impact Eng 92:32–49CrossRefGoogle Scholar
  20. Karagiozova D, Alves M (2017) On the dynamic compression of cellular materials with local structural softening. Int J Impact Eng 108:153–170CrossRefGoogle Scholar
  21. Langdon GS, Karagiozova D, Theobald MD, Nurick GN, Lu G, Merrett R, Mayimele N (2010) Fracture of aluminium foam core sacrificial cladding subjected to air blast loading. Int J Impact Eng 37:638–651CrossRefGoogle Scholar
  22. Langdon GS, Karagiozova D, von Klemperer CJ, Nurick GN, Ozinsky A, Pickering EG (2013) The air-blast response of sandwich panels with composite face sheets and polymer foam cores: experiments and predictions. Int J Impact Eng 54:64–82CrossRefGoogle Scholar
  23. Langdon GS, von Klemperer CJ, Sinclair G, Ghoor I (2017) Influence of curvature and load direction on the air-blast response of singly curved glass fiber reinforced epoxy laminate and sandwich panels, Explosion Blast Response of Composites, Elsevier, pp. 133–160CrossRefGoogle Scholar
  24. Lopatnikov SL, Gama BA, Haque MJ, Krauthauser C, Gillespie JW Jr (2004) High-velocity plate impact of metal foams. Int J Impact Eng 30:421–445CrossRefGoogle Scholar
  25. Luong DD, Strbik OM, Hammond VH, Gupta N, Cho K (2013) Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rate. J Alloys Compd 550:412–422CrossRefGoogle Scholar
  26. McKown S, Shen Y, Brookes WK, Sutcliffe CJ, Langdon GS, Nurick GN, Cantwell WJ, Theobald MD (2008) Quasi-static and blast loading response of lattice structures. Int J Impact Eng 35(8):795–810CrossRefGoogle Scholar
  27. Merrett RP (2011) Dynamic response of aluminium foams, MSc dissertation, University of Cape TownGoogle Scholar
  28. Merrett RP, Langdon GS, Theobald MD (2013) The blast and impact loading of aluminium foam. J Mater Design 44:311–319CrossRefGoogle Scholar
  29. Nowacki WK (1978) Stress-waves in non-elastic solids. Pergamon Press, Oxford, New YorkCrossRefGoogle Scholar
  30. Pattofatto S, Elnasri I, Zhao H, Tsitsiris H, Hild F, Girard Y (2007) Shock enhancement of cellular structures under impact loading: part II analysis. J Mech Phys Solids 55:2672–2686CrossRefGoogle Scholar
  31. Reid SR, Peng C (1997) Dynamic uniaxial crushing of wood. Int J Impact Eng 19:531–570CrossRefGoogle Scholar
  32. Schüler P, Fischer SF, Bührig-Polaczek A, Fleck C (2013) Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading. Mater Sci Eng A 587:250–261CrossRefGoogle Scholar
  33. Shen J, Lu G, Ruan D (2010) Compressive behaviour of closed-cell aluminium foams at high strain rates. Compos Part B 41:678–685CrossRefGoogle Scholar
  34. Sun Y, Li QM (2018) Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling. Int J Impact Eng 112:74–115CrossRefGoogle Scholar
  35. Szyniszewski ST, Smith BH, Hajjar JF, Schafer BW, Arwade SR (2014) The mechanical properties and modeling of a sintered hollow sphere steel foam. Mater Des 54:1083–1094CrossRefGoogle Scholar
  36. Tan PJ, Reid SR, Harrigan JJ, Zou Z, Li S (2005) Dynamic compressive strength properties of aluminium foams: part II – shock theory and comparison with experimental data. J Mech Phys Solids 53:2206–2230CrossRefGoogle Scholar
  37. Technical Manual for CYMAT Smart MetalTM (2003) Cymat Corp, CanadaGoogle Scholar
  38. Theobald MD, Langdon GS, Nurick GN, Pillay S, Heyns A, Merrett RP (2010) Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading. Compos Struct 92(10):2465–2475CrossRefGoogle Scholar
  39. Ushijima K, Cantwell WJ, Chen DH (2013) Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading. Int J Mech Sci 68:47–55CrossRefGoogle Scholar
  40. Walther G, Kloden B, Buttner T, Weissgarber T, Kieback B, Bohm A, Naumann D, Shaberi S, Timber L (2008) A new class of high temperature and corrosion nickel-based open-cell foams. Adv Eng Mater 10(9):803–811CrossRefGoogle Scholar
  41. Wang E, Gardner N, Shukla A (2009) The blast resistance of sandwich panels with stepwise graded cores. Int J Solids Struct 46(18–19):3492–3502CrossRefGoogle Scholar
  42. Zhao H, Elnasri I, Abdennadher S (2005) An experimental study on the behavior under impact loading of metallic cellular materials. Int J Mech Sci 47:757–774CrossRefGoogle Scholar
  43. Zheng ZJ, Liu YD, Yu JL, Reid SR (2012) Dynamic crushing of cellular material: continuum-based wave models for transitional and shock modes. Int J Impact Eng 42:66–79CrossRefGoogle Scholar
  44. Zheng ZJ, Wang C, Yu JL, Reid SR, Harrigan JJ (2014) Dynamic stress–strain states for metal foams using a 3D cellular model. J Mech Phys Solids 72:93–114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Solid MechanicsInstitute of Mechanics, Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Blast Impact and Survivability Research Unit, Department of Mechanical EngineeringUniversity of Cape TownRondebosch, Cape TownSouth Africa

Section editors and affiliations

  • Filipe Teixeira-Dias
    • 1
  1. 1.The University of Edinburgh - School of EngineeringEdinburghUK